• 제목/요약/키워드: $H_{\infty)$ control

Search Result 704, Processing Time 0.035 seconds

Quasi-LQG/$H_{infty}$/LTR Control for a Nonlinear Servo System with Coulomb Friction and Dead-zone

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.24-34
    • /
    • 2000
  • In this paper we propose a controller design method, called Quasi-LQG/$H_{\infty}$/LTR for nonlinear servo systems with hard nonlinearities such as Coulomb friction, dead-zone. Introducing the RIDF method to model Coulomb friction and dead-zone, the statistically linearized system is built. Then, we consider $H_{\infty}$ performance constraint for the optimization of statistically linearized systems, by replacing a covariance Lyapunov equation into a modified Riccati equation of which solution leads to an upper bound of the LQG performance. As a result, the nonlinear correction term is included in coupled Riccati equation, which is generally very difficult to thave a numerical solution. To solve this problem, we use the modified loop shaping technique and show some analytic proofs on LTR condition. Finally, the Quasi-LQG/$H_{\infty}$/LTR controller for a nonlinear system is synthesized by inverse random input describing function techniques (ITIDF). It is shown that the proposed design method has a better performance robustness to the hard nonlinearity than LQG/$H_{\infty}$/LTR method via simulations and experiments for the timing-belt driving servo system that contains the Coulomb friction and dead-zone.

  • PDF

Design of a Robust Controller for Vehicle Rollover Prevention (차량 전복 방지를 위한 강인 제어기 설계)

  • Yim, Seong-Jin;Kim, Yong-Moo;Oh, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1311-1318
    • /
    • 2012
  • Vehicle systems are frequently exposed to parameter uncertainties such as vehicle speed and height of center of gravity. If a controller is designed to be robust against these parameter uncertainties, the rollover prevention capability can be considerably enhanced. In this study, robust controllers $H_2$ and $H_{\infty}$ are designed by using LMI for vehicle rollover prevention control in the discrete time domain. Some simulations using CarSim, a reliable simulation tool, are performed to validate the proposed controllers.

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

LMI-BASED $H_{\infty}$ LATERAL CONTROL OF AN AUTONOMUS VEHICLE BY LOOK-AHEAD SENSING

  • Kim, C.S.;Kim, S.Y.;Ryu, J.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.609-618
    • /
    • 2006
  • This paper presents the lateral control of an autonomous vehicle by using a look-ahead sensing system. In look-ahead sensing by an absolute positioning system, a reference lane, constructed by straight lanes or circular lanes, was switched by a segment switching algorithm. To cope with sensor noise and modeling uncertainty, a robust LMI-based $H_{\infty}$ lateral controller was designed by the feedback of lateral offset and yaw angle error at the vehicle look-ahead. In order to verify the safety and the performance of lateral control, a scaled-down vehicle was developed and the location of the vehicle was detected by using an ultrasonic local positioning system. In the mechatronic scaled-down vehicle, the lateral model and parameters are verified and estimated by a J-turn test. For the lane change and reference lane tracking, the lateral controllers are used experimentally. The experimental results show that the $H_{\infty}$ controller is robust and has better performance compared with look-down sensing.

Robust Reliable $H^{\infty}$ Control of Continuous/Discrete Uncertain Time Delay Systems: LMI Approach (LMI를 이용한 연속/이산 불확실성 시간지연 시스템의 견실 신뢰 $H^{\infty}$제어)

  • 김종해;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.401-404
    • /
    • 1998
  • In this paper, we present robust reliable $H\infty$ controller design methods of continuous and discrete uncertain time delay systems through LMI(linear matrix inequality) approach, respectively. Also the existence conditions of state feedback control are proposed. Using some changes of varables and Schur complements, the obtained sufficient conditions are transformed into LMI form. We show the validity of the proposed method through numerical examples.

  • PDF

Automatic Blood Pressure Control Using PI Controller with $H_{\infty}$ Loop-Shaping

  • Han, Jeong-Yup;Lee, Sang-Kyung;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.326-329
    • /
    • 2004
  • In this paper, we show a new form of blood pressure controller combined PI control with $H_{\infty}$ loop-shaping. Hypertensive patients or post-operative patients need to maintain normally blood pressure. Exact regulation of blood pressure is needed for maintaining variable blood pressure of preventing complications. The regulation of blood pressure is achieved by injecting drugs, and usually sodium nitroprusside is used as those kinds of drugs. It is necessary to control the infusion rate sodium-nitroprusside carefully to achieve the desired blood pressure. It has been known that regulation of blood pressure by automatic controller is more effective than regulation of blood pressure by human operators. The control of blood pressure has many constraints and uncertainties. Most of biological system has the time-varying variables and the side effects such as increased risk of sepsis and organ failure. To solve such a problem, we design a new robust PI controller using $H_{\infty}$ loop-shaping to decrease noise effects that come out from human body and errors for time delay. The system with designed controller shows more stable control of mean blood pressure and more robust performance for uncertainties. Validation methods for the control performance are confirmed to computer simulations.

  • PDF

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

The Design of Multi-Objective $H_2/H_{\infty}$ Controllers for multiple linear Time-invariant models (다중 선형 시불변 모델에 대한 다목적 $H_2/H_{\infty}$ 제어기 설계)

  • Cho, Do-Hyeoun;Won, Young-Jin;Lee, Jong-Yong
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.13-18
    • /
    • 2005
  • This paper presents a design of a multi-objective $H_2/H_{\infty}$ controller of an inverted pendulum with polytopic model by the stabilizing regulator and tracking performances. Multi-objective controllers are designed for polytopic models by the LMI design technique with convex algorithms. It is observed that the inverted pendulum controlled by any controller designed for each polytopic model is stably restored to the vertical angle position for initial values of larger tilt angles.

Partial state feedback $H_{\infty}$ control of the two-mass resonant system having IM (2관성 공진계를 갖는 유도 전동기의 부분적인 상태 보상을 이용한 $H_{\infty}$ 제어)

  • 강석진;김진수;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.58-62
    • /
    • 1998
  • In the industrial motor drive systems, a torsional vibration is often generated because of the elastic elements in torque transmission. One of general methods for the system is H$\infty$ controller to suppress the torsional vibration and reject the torque disturbance. vibration and reject the torque disturbance. Moreover, the two-degrees-of-freedom controller, which includes the H$\infty$ controller, is designed in order to improve the command following property. In this paper, we propose a new H$\infty$ controller with partial state feedback. This method having simple structure satisfies with the fast command following property and the attenuation of disturbances and vibrations simultaneously, just like the complicated TDOF H$\infty$ controller

  • PDF

ROBUST $H_{\infty}$ FIR SAMPLED-DATA FILTERING

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.521-521
    • /
    • 2000
  • This paper investigates the problem of robust H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for linear continuous time-varying systems with sampled-data measurements. It is assumed that the system is subject to real time-varying uncertainty which is represented by the state-space model having parameter uncertainty. The robust H$_{\infty}$ FIR filter is proposed for the continuous-time linear parameter uncertain systems. It is also derived from the equivalence relationship between the robust linear H$_{\infty}$ FIR filter and the robust linear H$_{\infty}$ filter with sampled-data measurements.

  • PDF