• Title/Summary/Keyword: $H_\infty$

Search Result 1,042, Processing Time 0.026 seconds

Mixed $H_2/H_{\infty}$ Controller Design Considering Minimum Entropy (최소 엔트로피를 고려한 혼합 $H_2/H_{\infty}$ 제어기 구성)

  • Lee, Sang-Hyuk;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.999-1001
    • /
    • 1996
  • In this paper, we represented the relation of minimum entropy/$H_{\infty}$-controller and mixed $H_2/H_{\infty}$-controller. An $H_2$ controller design problem involving a constraint on $H_{\infty}$ disturbance attenuation is considered. By the equivalence of the mixed $H_2/H_{\infty}$ control problem and the minimum entropy/$H_{\infty}$-control problem, we presented the controller state-space realization. Decentralized case was illustrated briefly.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

Robust $H_{\infty}$ Controller Design for Performance Improvement of Semi-Active Suspension System (반능동 현가장치의 성능향상을 위한 견실 $H_{\infty}$ 제어기 설계)

  • 정승권
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.85-90
    • /
    • 2000
  • In this paper, a robust $H_{\infty}$ a controller for semi-active suspension system is proposed. For the improvement of ride quality, the robust $H_{\infty}$ controller is designed to satisfy robust stability and road disturbance attenuation using an $H_{\infty}$ control design procedure. The performances of the design controller for some road conditions are evaluated by computer simulation and finally these simulation results show the usefulness and applicability of the proposed robust $H_{\infty}$ controller.

  • PDF

$H_{\infty}$ CONTROLLER DESIGN VIA LQ GAME PROBLEM FOR DISRETE TIME SYSTEM

  • Kwon, Wook-Hyun;Lee, Joon-Hwa;Kim, Won-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.864-867
    • /
    • 1990
  • In this paper, a state space solution to the discete time H$_{\infty}$ control problem is presented. It is shown that there exist LQ game problem corresponding to H$_{\infty}$ control problems and the H$_{\infty}$ controller can be obtained by solving the LQ game problem. Explicit state space formulae are given for the state feedback H$_{\infty}$ controller and output feedback H$_{\infty}$ controllers.lers. state feedback $H_{\infty}$ controller and output feedback $H_{\infty}$ controllers.

  • PDF

A Study on State Space H2H Controller Using Sliding Mode (슬라이딩 모드를 이용한 상태공간 H2H 제어기에 관한 연구)

  • 김민찬;박승규;안호균
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.868-873
    • /
    • 2003
  • $H_{\infty}$ control has been applied to the design of practical control systems widely because of its robustness. It can minimize $H_{\infty}$ norm of the transfer function between the desired output and the disturbances. The SMC(Sliding Mode Control) is more robust and give the better performance than the $H_{\infty}$ control if the matching condition is satisfied. A controller which can have the advantages of $H_{\infty}$ control and the SMC is proposed to add the robustness of the SMC to the $H_{\infty}$ controller. Its design is based on the augmented system of which dynamics have one higher order than that of the original system and has the same dynamic as the desired system in spite of uncertainties. The dynamic of proposed sliding surface is the same dynamic as the system controlled by $H_{\infty}$ controller without the uncertainties which satisfy the matching condition.

A Study on Robustness Improvement of $H_{\infty}$ Control Using SVM (SVM을 이용한 $H_{\infty}$ 제어의 강인성 향상에 관한 연구)

  • Kim, Min-Chan;Yoon, Seong-Sik;Park, Seung-Kyu;Ahn, Ho-Gyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.276-281
    • /
    • 2008
  • This paper proposes a new sliding surface which can have the same dynamics of nominal system based on SVM(Support Vector Machines). The conventional sliding mode control can not have the properties of $H_{\infty}$ controller because its sliding surface has lower order dynamics than the original system. The additional states must be used to solve this problem. However, The sliding surface of this paper can have the dynamics of $H_{\infty}$ control system by using support vector machines without defining any additional dynamic state. By using SVM, the property of $H_{\infty}$ control system can be estimated as a relationship between the states. With this relationship, a new sliding surface can be designed and have $H_{\infty}$ control system properties. As a result, in spite of the parameter uncertainty, the proposed controller can have the same dynamic of nominal system controlled by $H_{\infty}$ controller.

$H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR Filters for Discrete-time State Space Models

  • Lee, Young-Sam;Jung, Soo-Yul;Seo, Joong-Eon;Han, Soo-Hee;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.401-404
    • /
    • 2003
  • In this paper, $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filters are newly proposed for discrete-time state space signal models. The proposed filters require linearity, unbiased property, FIR structure, and independence of the initial state information in addition to the performance criteria in both $H_2$ and $H_{\infty}$ sense. It is shown that $H_2$, $H_{\infty}$, and mixed $H_2/H_{\infty}$ FIR filter design problems can be converted into convex programming problems via linear matrix inequalities (LMIs) with a linear equality constraint. Simulation studies illustrat that the proposed FIR filter is more robust against uncertainties and has faster convergence than the conventional IIR filters. the conventional IIR filters.

  • PDF

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

Delay-dependent $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays (다중 상태 시간지연을 가지는 연속시간 특이시스템의 지연종속 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.22-28
    • /
    • 2009
  • In this paper, we consider the problem of $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays. The aim of designed filter is to guarantee regularity, impulse-free, asymptotic stability and $H_{\infty}$ norm bound of filtering error singular system. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent BRL (bounded real lemma) for singular systems with multiple state-delays is derived. Based on the result, the existence condition of $H_{\infty}$ filter and filter design method are proposed in terms of LMI (linear matrix inequality). Finally, a numerical example is provided to show the validity of the design methods.

Reduced-order Parameter-dependent Robust $H_{\infty}$ Filtering for Discrete Uncertain Singular Systems (이산 불확실 특이시스템의 변수종속 차수축소 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.59-65
    • /
    • 2011
  • In this paper, we present a reduced-order parameter-dependent robust $H_{\infty}$ filter design method for discrete-time singular systems with polytopic uncertainties. A BRL(bounded real lemma) for parameter-dependent singular systems is derived from a parameter-dependent Lyapunov function. On the basis of the obtained BRL, low order robust $H_{\infty}$ filter design method is presented by polytopic approach, new reduced-order method, and LMI(linear matrix inequality) technique. Finally, a numerical example is presented to illustrated the feasibility of the proposed method.