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Parallel Robust H,, Control for Weakly Coupled Bilinear Systems with
Parameter Uncertainties Using Successive Galerkin Approximation

Young-Joong Kim and Myo-Taeg Lim

Abstract: This paper presents a new algorithm for the closed-loop H, composite control of
weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous
disturbance using the successive Galerkin approximation (SGA). By using weak coupling theory,
the robust H,, control can be obtained from two reduced-order robust H, control problems in
parallel. The H, control theory guarantees robust closed-loop performance but the resulting
problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties
inherent in the H, control problem, two H, control laws are constructed in terms of the
approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA
method. One of the purposes of this paper is to design a closed-loop parallel robust H,, control
law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method.
The other is to reduce the computational complexity when the SGA method is applied to the high
order systems.

Keywords: Bilinear system, H,, control, parallel processing, parameter uncertainty, successive

Galerkin approximation, weak coupling.

1. INTRODUCTION

The major importance of bilinear systems indeed
lies in their applications to the real world systems as
demonstrated in some economic processes, ecology
processes, socioeconomic processes and numerous
biological processes, such as the population dynamics
of biological species, water balance and temperature
regulation in the human body, control of carbon
dioxide in the lungs, blood pressure, immune system,
cardiac regulator, etc. [1,2]. These bilinear systems are
linear in control and linear in state but not jointly
linear in state and control. It is important to
understand the real properties of the system or to
guarantee the global stability or improve the
performance by applying the various control
techniques to the bilinear system rather than its
linearized system since the linearization of the bilinear
system loses its nature property [2-6].

Many real physical systems are naturally weakly
coupled such as power systems, communication
satellites, helicopters, chemical reactors, electrical
networks, flexible space structures, and mechanical
systems in modal coordinates. The weakly coupled
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linear systems were introduced to the control audience
by Kokotovic [7]. Since then many theoretical aspects
for weakly coupled linear systems have been studied.
These results lead to a reduction in the size of the
required computation and allow parallel processing.
Specifically, the optimal control is obtained in the
form of a feedback law, with the feedback gains
calculated from two independent reduced-order
optimal control problems [8,9]. By using these results,
the optimal control problems for weakly coupled
bilinear systems have been studied [5,6].

Recently, robust control is issued and developed by
many researchers for linear systems [10-12]. But in
the class of bilinear and nonlinear systems, because
conditions for the solvability of the robust H., control
design problem are hard, still there are a lot of
problems to be developed. For bilinear and nonlinear
systems with parameter uncertainties, the H,, optimal
control problem can be reduced to the solution of the
Hamilton-Jacobi-Isaac (HJI) equation, which is a
nonlinear partial differential equation (PDE) [13]. The
solution of a nonlinear PDE is extremely difficult to
solve and so researchers have looked for methods of
obtaining its approximate solution. In particular, the
practical method named successive Galerkin
approximation (SGA) to improve a stabilizing
feedback control was proposed in [14,15]. The
problem of a stabilizing H,, control can be reduced to
solving a first-order, linear PDE known as the
Generalized-Hamilton-Jacobi-Isaac (GHJI) equation
[16]. An interesting fact is that when the process is
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iterated, the solution to the GHJI equation converges
uniformly to the solution of the HII equation which
solves the H,, optimal control problem [16]. Recently,
[14] shows how to find a uniform approximation such
that the approximate controls are still stable on a
specified set using SGA. However, the SGA method
has the difficulty that the complexity of computations
increases according to the order of a system or a state
variable. Specifically, for using the SGA method, we
need N basis functions and must compute n-tuple
integrals, where n is order of the system. Moreover,
the number of those computations increases according
to O(N?). Therefore, we deal with two reduced-order
HJI equations in this paper. The robust A, control law
is designed from the solutions of two independent
reduced-order HJI equations using the SGA method.

Then, #;- and n,-tuple integrals are computed in
parallel, and the number of computations is greatly
decreased, where n = n; + ny. In this paper, a duel
successive algorithm (Algorithm 1) is proposed as a
heuristic formulation, and it is the modification
addressed in the successive approximation reported in
[3,4,16]. Since the GHII equations are the partial
differential equations, we hardly solve them.
Therefore, we propose the alternative method (Algo-
rithm 2) using Galerkin’s approximation. In Algorithm
2, only linear equations remain to be solved.

This paper is summarized as follows. In Section 2,
weakly coupled bilinear systems with time-varying
parameter uncertainties and exogenous disturbance
are studied. In Section 3, we define two independent
GHII equations. The solutions of two GHIJI equations
are obtained using the SGA method, and then a robust
H,, control law is designed. In addition, we present
new algorithms for the closed-loop parallel H, control
of weakly coupled bilinear systems with parameter
uncertainties using the SGA method. In Section 4, the
proposed algorithm is demonstrated on a real physical
bilinear model of a paper making machine. Finally,
Section 5 gives our conclusion.

2. ROBUST H,, CONTROL FOR WEAKLY
COUPLED BILINEAR SYSTEMS WITH
PARAMETER UNCERTAINTIES

The weakly coupled bilinear system with time-
varying parameter uncertainties and exogenous
disturbance under consideration is represented by
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x:[xlT X5 is a state variable, u=[u17 ug T is

a control input, z<R” is a controlled output, and
T
wz[a)lT oy } e RP is an exogenous disturbance.

A;, Bi, H;, C, D are constant matrices of appropriate

dimensions, and ¢ is a small positive coupling

parameter. In addition, A4; represents the uncertainty

in the system and satisfies the following assumption.
Assumption 1:

AA] 8AA2 El & E2 Fi & Fz
= o) ,(4)

8AA3 AA4 € E3 E 4 ek 3 F, 4
where E; and F; are known real constant matrices with
appropriate dimensions and Q(f) is an unknown
matrix function with Lebesgue measurable elements
such that Q()7 Q@) < 1. n

A quadratic cost functional associated with (1)-(2) to
be minimized has the following form:

Jzéfj( Tz—yza)Ta))dt, 5

where y is a positive design parameter.
For computational simplification,
following notations:

Blx) = B, &B, x || M, &M,

()= gB; By i X |leM, M,
_ Ii By(x) 5};2 (X)jl
eB3(x)  By(xy)

denote the

(6)

and without loss of generality, we assume that c'c=
iz C] 8C2

. and D'D =1,
8C2 C3
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Since the reduced order technique cannot be
applied to HJI equations directly, it is first applied to
Riccati equations and then decoupled HJI equations
are derived from reduced order Riccati equations.

With the help of [11,13], we can derive the
following state dependent Riccati equation for the
weakly coupled bilinear system (1)-(2) with respect to
the performance criterion (5).

Pa+ATP- P{f;(x)é(x)T —y2HHT - o-EET}P

LCTC+XFF 181 =0, %)
(e

where ¢ > 0 is a design parameter and J is a
sufficiently small positive constant. Moreover, H.,
control law is given by

u" =-B(x)T Px, (8)
and the disturbance is given by

o =y 2HT Px, )

where P can be partitioned as

R P
P=l . . (10)
b B
Setting & = 0, we can get the following O(sz)
approximations:
S(x)=B(x)B(x) -y *HHT —cEET
Si(x)) £8,(%)
{ o (1
€85 (x)  S3(x2)

T, &T
r=cc”+1pTRo| T2 (12)
o e, T
Partitioning the state dependent Riccati equation (7)
according to (10)-(12), and setting & = 0, we get an
O(¢%) approximation of (7) in terms of two reduced-
order, decoupled Riccati equations:

BA + A4 P —PBS/(x)R +T, +81 =0, (13)

Pidy+ AP~ PS; ()R + T +81=0  (14)
and non-symmetric Riccati equation with no input and
no disturbance:

T
{4 =Si(0)R} P+ Py{dy - S3(x)P}
+RA + A4 P~ BS,()B+T, =0.  (15)

A detailed description of reduce-order scheme can be

found in [6]. Since (13)-(14) are state dependent
Riccati equations, they have no analytical solution.

Focusing the nonlinear f,, control in this paper, we
deal with HJT equations rather than Riccati equations.
HIT equations corresponding to (13) and (14) are
given by

an’ 1 lay’ o,

— Ax+—x; (T} +01 S (% =0,(16
o 1121(1 )% - 2 n l(l)éx (16)
al,’ 1 18,7

Y2 goxgtaxl (T +81) %y — =2 S3(x,) 22 =0
o, ¥ 22(3 )% 2o, 3(2)8x2

an
where 0J1/0x; = Pix; and 6J,/0x, = Psx;. Moreover
denoting 8J5/0x; = Pyx, and {8J5/0x,}" = x,"Pa, we
obtain the following equation equivalent to (15) after
substitutions:

T

1o o5
e

x| {Rdy + 4 B~ RSy(x)Py + Ty | x, =0.(18)

{4 -8R} {4y~ S3(x)R}x,

Unfortunately, they still have no analytical solution.
However, we can obtain approximate solutions of (16)
and (17) using successive Galerkin approximation. If
the solutions of (16)-(17) are found, then the solution
of (18) can be easily found using Galerkin
approximation.

2. DESIGN OF H,, CONTROL LAW FOR
WEAKLY COUPLED BILINEAR SYSTEMS
WITH PARAMETER UNCERTAINTIES
USING SGA

In order to design the H., control law u, we present
the scheme to find the solutions for (16)-(17) using
the SGA method.

Assumption 2: Q, and , are compact sets of R

and R, respectively. The state x; and x, are

bounded on Q; and Q,, respectively. ]
Under Assumption 2, the successive approximation,
which is the duel iteration in policy space to solve HJI
equations is proposed as follows.
Algorithm 1: Duel Successive Approximation

Let an initial control law ul(o) TR X >R, be

stabilizing for the system % = 4x + B(x)u;(x)

with no uncertainty and no disturbance (i.e., A4, =0,
(0 0y _ =0).
Obtain Jl(l’o) from
T
aJ L9 ~ 1
Ax+B (O + =xT C
ox, {11 1(x Dy } 5™ 1%
1
+2u1(0)T ul” = 0. (19)
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While [/ -7 >
Set j=0 and (ul(i D<o
while /(") =] > o

Obtain Jl(i’j ) from the GHJI equation defined as:

a7@nT 1 a7 a3
1 Ax Si(xp)
oxy 2 oy Oxy

(20)
P J(l i
=0.

a](l J1
Sq(xp)

1
+5x1T (R +61)x - " on

Update the disturbance:

YA

a)l(i, j+
axl

=y H{

@n

Set j=j+1.
End loop.
Update the control law:

. aJ(l J)
ul(l,j+1) T

-By(x)

(22)
oy

Set i=i+1.

End i loop. O

In Algorithm 1, a is an arbitrary small positive
design parameter.

Since the GHII equation (20) is a linear partial
differential equation, it is still difficult to solve. In this
paper, we seek an approximate solution of this
equation using Galerkin's projection method. A
detailed description of the SGA method can be found
in [14,17,18].

Given an initial control ul(o), we can compute an

0,07

approximation to its cost Jl(}?;lo) SN,

@y, where

cl0:0) 4
1N

(19), ie.,

is the solution of Galerkin approximation of

al(0,0) CE?J?) + bl(0,0) -0, (23)

where
0,0) _
o = <V1®1N1 A%, @y, >Q
<V @y, By Gl Dy, >Q ,

00 _L/ 71 L/, o1 u®
b] —§<xl Clxl,@”vl >Ql + 2< q) Nz >Q .

In the above equations, @y denotes the vector of
basis functions and V®,y, denotes the Jacobian
matrix of @y .

we can obtain the

= BNT
=15, @y, where

After duel iterative steps,

approximation to its cost Jl(]"\’/ )

(”j )is the solution of Galerkin approximation of (20),

i.e.,
a"elil) + b4 =0, 24
where
a = <qu)1N1 4%, Dy, >Q
<V1(D1N1 8105V, ey IH) Dy, :)91 ,
) = %<x1T (T + D)%, @y, >Q1
+%<¢S\7U 1)Tvl‘DlN *5'1(961)V1CI>1N1 Y i (DINI>
Moreover, we can obtain the updated disturbance that

is based on the approximated solution, Jl(zlvlj ¥

a (l,_])

Lj+l -2 1N -2
1(lef+)—7’ H{ 8x1 =7 HlTvl‘DlN S\rj), (25)
1

and the updated control law:

| ~
uy Y = =B ()" — == =B () v, @y, 5. 26)
1
Similarly, given an initial control u(O’O), we can

)T
2N,

compute an approximation to its cost J, (”f '=c
®,y,- The following theorem shows the existence of
an unique solution of SGA.

Theorem 1: Suppose that {¢k}fv is linearly indepen-
dent and O /Ox #0,

solution, ¢ .

then there exists a unique

Proof: Suppose that {¢, }fv
dent then @
O¢y /Ox#0, such that V®, #0, then linearly
independent @, implies that V@,
independent. This implies that (VO Ax,®y ),

is linearly indepen-

is linearly independent. Suppose

is linearly

—<ch NSCIVDL ey, Dy >Q is invertible. This implies
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that a](i’]) is invertible in (24) for every i and ;.
Therefore, there exists a unique solution to a linear
equation (24). O

From the solutions of Galerkin approximations of
(16) and (17), P, and P; can be determined. Then, we
can obtain the approximate solution of (18).

Defining J(i’j) (”J)TCD3N3, we can denote that

3N3
8J3 /axl = Vlc(l"/) ®3N and 6J3 /aJC2 = Vzc( )T(D3N3 .

Using these notations, we can derive the Galerkin
approximation of (18) as follows:

a3C3N3 + b3 = O, (27)
where
a3 = <V1(D3N3 {4 =81 ()R}, Dy, >Q3

+ <V2q)3zv3 {4 = S3(0) Py} xy, D3 >Q3 :

T
by :<x1T {PIAZ +4; P - RS (X)Py +T2}x2’®3N3 >Q
3

In this case, Q;=0Q;UQ, and P; can be
determined without an iterative step.

Hence, we propose a new algorithm which designed
an H, control law with two independent reduced-
order HIB equations (16), (17), and (18) using the
SGA method for weakly coupled bilinear systems
with time-varying parameter uncertainties and
exogenous disturbance.

Algorithm 2: Duel Successive Galerkin Approxi-

mation

Let an initial control law ul(o) (R x Q) >R, be
=Ax + E(xl Yuy(x)
with no uncertainty and no disturbance (i.e.,
Ay =0, 8 =0).

Initial step: Compute

stabilizing for the system X

0,0
g =<V1®1N1 A1x1’®1N1>
<V Dy, By (xq i CD1N1> ;
Q

00 _L/ T L/ or,
bl( ) =5<x1 Clxl,CDINl >Ql +E<ul( ) ul( ),(DlNl >Q1 5

and

0,0
ag ) = <V2(D2N2 A4X2 ’q)2N2 >Qz

= 0
+ <V2(D2N233 ()t )’(D2N2 >Q ,

00 _Ll/. 7 0)T, (0
bé ) =5<x2 C3X2,®2N2 >QZ +2< ( ) ug ),®2N2 >QZ .

Find % 0)

N, (0’02) satisfying the following

and ¢,y
linear equations:
0D 50 o,

dPVLD 4500 g,

Routine for Py:
While | () clNlj)“>a

Set j=0 and a)("O) =0.
While o7 - e3>
Compute

(1,1) <V @y, A xp, Dy, >Q

R
_<VICDINISI(XI)V1®1N1C§ /- )®1N1> ,
1
o) = (o] (T, + 51y, @
\ > x (R )X 11\/1>Ql

Jj-DT j-1
+2< eIV @y S () V@] e/ ),®1N1>Q .
1

Find c&,’l) satisfying the following linear
equations:

DD + b =0

Update the disturbance:
i, j+1 24T
off " = S HT V)
Set j=j+1.
End loop.
Update the control law:

uy ) = =By ()T v, @]y o).

Set i=i+l.
End i loop.
Determine P,.

Routine for P;:

While l () i]fllz’j)‘|>a

Set j=0 and a)(i’O)=0

While |3 —e§ 0> o
Compute

agl,J) = <V2®2N2 A4X2,CD2N2 >.QZ
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T (ij-l

_<V2®2N2 S3(2)V, Do, 0(211\52 ),®2N2 >Qz ,

1
B = (3] (T + 61)x,, B, )
2 Q
1 /G j-nr T (-1
+E<(21A{2 ) V2®2N2S3(x2)v2q)2[\/2c(21]\{2 )
(DZNZ >QZ *

Find cg;;g satisfying the following linear
equations:

ag’j)c(zi]’\{z + béiaj) =0.

Update the disturbance:

i, j+1 -2 ++T T (i,]
a)gl\{; ) =yH] V,Poy, C(ZIA{;'
End loop.

Update the control law:

Lj+D) _  p T T (i,j
uglAfz )—_B4(XZ) VZ@ZNZCZINIZ)'

Set i=i+]1.
End i loop.
Determine Ps.

Routine for P;:
Compute

a3 =(V1 @3y, {4 = S () A} x1, Dy,
Q3

+ <V2®3N3 {4 = $300) B} xy, @3, >Q3 ;

by :<x1T {PlAz + 4] Py - RS,(x)P, +T2}x2’®3N3 >Q :

3

Find c5 Ny satisfying the following linear equations:

G3C3N3 + b3 =0.

Determine P».
Final step:
The approximate parallel A, control law is given by
| A &R
UpN =-BT IT 2 X. (28)
e B

g

The following theorem shows that the approximate

parallel A, control law, u,y, designed by the proposed

algorithm converges to the H,, optimal control law, u".

Theorem 2: For any small positive constant f, we
can choose N for a sufficiently large i to satisfy that:

* @)
i

<B. (29)

Proof: It was proved that u’ converges to uy
pointwise on Q for finite N in [14], where uy is a
control law designed using the SGA. It implies that
for a sufficiently large i, we can choose N satisfying

)

”up —Upy | < B, where u, is the parallel H, control

law obtained by the reduced order scheme for weakly
coupled bilinear systems and £ is a small positive
constant. With the help of weakly coupling theory,
=u +O(.92). This implies that for any small

u
p

positive constant 5, we can choose N for a sufficiently

large i satisfying (29). O

4. CASE STUDY: A PAPER MAKING
MACHINE

In order to demonstrate the efficiency of the
proposed method for the parallel H, control for
weakly coupled bilinear systems with time-varying
parameter uncertainties and exogenous disturbance
using Algorithm 2, we have run a fourth-order real
example, a paper making machine control problem
reported in [19].

The problem matrices have the following values:

[-1.93 0 0 0
Y 0.394 -0.426 0 0
1o 0 -0.63 0o |
10.095 -0.103 0.413 -0.426
[1.274 1.274 0 0
0 0 0 0
B: Py M]: ]
1.34  —-0.65 0.755 0.366
|0 0 0 0
00 0 0
00 0 0
My=M,= , Msy= ,
00 -0.718 —-0.718
00 0 0
1 0 013 0 1 0
r 0 1 0 0.09 00
c'Cc= , )
013 0 01 0 0 1
0 009 0 02 00

Initial states are chosen as x(t5) = [3.7 3.2 4 2.8],
time-varying parameter uncertainties are chosen as
1.2sin(0.57t), and exogenous disturbance is chosen as
[0.4sin(wr)-0.7cos(nr) 0.8cos(nt)-0.6sin(nt):]T. The
simulation results are presented in Figs. 1-5, where the
dashed lines are the trajectories that are obtained from
the full-order SGA method which is presented in [16],
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Fig. 1. Trajectories of x;.
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Fig. 2. Trajectories of x,.
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reduced—order SGA

Magnitude

0 2 4 6 8 10
Time [sec]

Fig. 3. Trajectories of x3.

and the solid lines are the trajectories that are obtained
from the proposed Algorithm 2. Fig. 5 indicates that
the performance criterion trajectory of the proposed
Algorithm 2 is better than that of the full-order SGA
method, because errors of the full-order SGA method
are bigger than those of the proposed algorithm. In the
full-order SGA method, eight-dimensional basis are
used and four-tuple integrals of 8 x (1 + 8 + 64) = 584

= = =full—order SGA
reduced—order SGA

Magnitude

0 2 4 6 8 10
Time [sec]

Fig. 4. Trajectories of x4.
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0 . .
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Fig. 5. Trajectories of performance criteria.

times are performed. But, in the proposed algorithm,
we can use only three-dimensional basis and compute
two-tuple integrals of 3 x (1 + 3 + 9) = 39 times for
each reduced-order problem in parallel, and compute
four-tuple integrals of 8 x (1 + 8) = 72 times based on
eight-dimensional basis for the problem according to
(18). Therefore, the computational complexity is
greatly reduced.

5. CONCLUSIONS

We have presented the closed-loop H, control
scheme for weakly coupled bilinear systems with
time-varying parameter uncertainties and exogenous
disturbance and developed a new algorithm using the
duel successive Galerkin approximation for the
scheme. The difficulty of the SGA method is a
computational complexity, but in the proposed
algorithm, it can be greatly reduced. The presented
simulation results for a fourth-order real example, a
paper making machine control problem, show that the
performance trajectories of the proposed algorithm are
superior to those of the full order SGA method. It
should be noted that the proposed algorithm is more
effective than the full order SGA method.
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