• Title/Summary/Keyword: $H^f$-spaces

Search Result 79, Processing Time 0.025 seconds

THE HEISENBERG INEQUALITY ON ABSTRACT WIENER SPACES

  • Lee, Yuh-Jia
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.283-296
    • /
    • 2001
  • The Heisenberg inequality associated with the uncertainty principle is extended to an infinite dimensional abstract Wiener space (H, B) with an abstract Wiener measure p$_1$. For $\phi$ $\in$ L$^2$(p$_1$) and T$\in$L(B, H), it is shown that (※Equations, See Full-text), where F(sub)$\phi$ is the Fourier-Wiener transform of $\phi$. The conditions when the equality holds also discussed.

  • PDF

On a Question of Closed Maps of S. Lin

  • Chen, Huaipeng
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.537-543
    • /
    • 2010
  • Let X be a regular $T_1$-space such that each single point set is a $G_{\delta}$ set. Denot 'hereditarily closure-preserving' by 'HCP'. To consider a question of closed maps of S. Lin in [6], we improve some results of Foged in [1], and prove the following propositions. Proposition 1. $D\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}:x{\in}F\}\mid{\geq}{\aleph}_0\}$ is discrete and closed if $\cal{F}$ is a collection of HCP. Proposition 2. $\cal{H}\;=\;\{{\cup}\cal{F}'\;:\;F'$ is an fininte subcolletion of $\cal{F}_n\}$ is HCP if $\cal{F}$ is a collection of HCP. Proposition 3. Let (X,$\tau$) have a $\sigma$-HCP k-network. Then (X,$\tau$) has a $\sigma$-HCP k-network F = ${\cup}_n\cal{F}_n$ such that such tat: (i) $\cal{F}_n\;\subset\;\cal{F}_{n+1}$, (ii) $D_n\;=\;\{x{\in}X\;:\;\mid\{F{\in}\cal{F}_n\;:\;x{\in}F\}\mid\;{\geq}\;{\aleph}_0\}$ is a discrete closed set and (iii) each $\cal{F}_n$ is closed to finite intersections.

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....

CAUCHY-RASSIAS STABILITY OF A GENERALIZED ADDITIVE MAPPING IN BANACH MODULES AND ISOMORPHISMS IN C*-ALGEBRAS

  • Shin, Dong Yun;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.617-630
    • /
    • 2011
  • Let X, Y be vector spaces, and let r be 2 or 4. It is shown that if an odd mapping $f:X{\rightarrow}Y$ satisfies the functional equation $${\hspace{50}}rf(\frac{\sum_{j=1}^{d}\;x_j} {r})+\;{\sum\limits_{\iota(j)=0,1 \atop {\sum_{j=1}^{d}}\;{\iota}(j)=l}}\;rf(\frac{\sum_{j=1}^{d}{(-1)^{\iota(j)}x_j}}{r}) \\({\ddag}){\hspace{160}}=(_{d-1}C_l-_{d-1}C_{l-1}+1)\;{\sum\limits_{j=1}^{d}\;f(x_j)}$$ then the odd mapping $f:X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation in Banach modules over a unital $C^*$-algebra. As an application, we show that every almost linear bijection $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital $C^*$-algebra ${\mathcal{A}}$ onto a unital $C^*$-algebra ${\mathcal{B}}$ is a $C^*$-algebra isomorphism when $h(2^nuy)=h(2^nu)h(y)$ for all unitaries $u{\in}{\mathcal{A}}$, all $y{\in}{\mathcal{A}}$, and $n=0,1,2,{\cdots}$.

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

SPACES OF CONJUGATION-EQUIVARIANT FULL HOLOMORPHIC MAPS

  • KAMIYAMA, YASUHIKO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.157-164
    • /
    • 2005
  • Let $RRat_k$ ($CP^n$) denote the space of basepoint-preserving conjugation-equivariant holomorphic maps of degree k from $S^2$ to $CP^n$. A map f ; $S^2 {\to}CP^n$ is said to be full if its image does not lie in any proper projective subspace of $CP^n$. Let $RF_k(CP^n)$ denote the subspace of $RRat_k(CP^n)$ consisting offull maps. In this paper we determine $H{\ast}(RF_k(CP^2); Z/p)$ for all primes p.

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

Fuzzy Hyperpsaces : Fuzzy Compactness

  • K.Hur;C.J. Rhee;J. H. Ryou
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.41-44
    • /
    • 2003
  • First, we investigate some properties of fuzzy compactness. Second, we introduce the concept of fuzzy local compactness in fuzzy topological space and study some of its properties. Finally, we investigate some relations between F-compactness in fuzzy topological spaces and one in fuzzy hyperspaces.

  • PDF