• Title/Summary/Keyword: $H^\infty$control

Search Result 704, Processing Time 0.023 seconds

Robust Decoupling Control of Ship Propulsion System with CPP (CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어)

  • 김영복;변정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

A Study on the Controller Design of Internal Combustion Engine by LMI Approach (선형 행렬 부등식을 이용한 내연기관의 제어)

  • Kim, Yeong-Bok;Byun, Jeong-Hwan;Yang, Ju-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.59-67
    • /
    • 1997
  • This paper gives a controller design method by Linear Matrix Inequality(LMI) for internal combustion engine with Continuously Variable Transmission(CVT) which satisfies the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. To the end, the validity and applicability of this approach are illustrated by simulation in the all engine operating regions.

  • PDF

Decentralized Output-feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

  • Shim, Duk-Sun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.158-162
    • /
    • 1998
  • We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H$\infty$ control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system.

  • PDF

Strong Stabilization Controller Design Using Advanced Unit Interpolation algorithm (개선된 Unit 보강 알고리즘을 이용한 강안정화 제어기 설계)

  • 윤한오;신창훈;박홍배
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.31-38
    • /
    • 1994
  • This paper presents an improved interpolation algorithm which enables to find a unit function in $H^{\infty}$. From the proposed algorithm the interpolation problem on the infinity point with multiplicity can be solved. This is based on the DPL algorithm the acquired unit function has low order and can be directly applied to strong/simultaneous stabilization problem in control systems. Finally, we verify that poles of transfer function of closed-loop system exist in stable region while investgating internal stability.

  • PDF

A New Approach to Anti-Sway System Design Problem

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1306-1311
    • /
    • 2004
  • We suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, as the basic and first step, we apply the $H_{\infty}$ control approach to anti-sway control system design problem. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance through simulation and experimental studies.

Review on the Control Methods of Quadcopters (쿼드콥터 제어 방법 고찰)

  • Yoon, Jonghuyn;Lee, Seunghee;Park, Jong Hyeon;Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Recently, quadcopters have been popular as aerial drones. The structure of quadcopters is simpler than traditional helicopters and they are easy to construct and maneuver. Various hardware platforms for quadcopters have been developed. However, the controller design is not easy due to the requirement of 6-DOF flights using 4 rotors(control inputs)(under-actuated systems). In order to overcome the underactuation problem, various control methods - PID, LQR, $H_{\infty}$, SMC, backstepping control, and etc. - have been suggested for the control of quadcopters. In this paper, dynamic features and control methods of quadcopters are reviewed and evaluated. Future works are proposed for designing the advanced controllers of quadcopters.

Intelligent Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on H$\_$$\infty$/ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response.

  • PDF

Robust Control of a Glass Fiber Composite Beam using $\mu$-Synthesis Algorithm

  • Lee, Seong-cheol;Kwon, Tae-Kyu;Yun, Yeo-Hung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. $1^{st}$ and $2^{nd}$ natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by $H_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF