• 제목/요약/키워드: $F_h$-convex functions

검색결과 11건 처리시간 0.024초

HERMITE-HADAMARD INEQUALITY FOR A CERTAIN CLASS OF CONVEX FUNCTIONS ON TIME SCALES

  • FAGBEMIGUN, B.O.;MOGBADEMU, A.A.;OLALERU, J.O.
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.17-25
    • /
    • 2022
  • The Hermite-Hadamard integral inequality for Fh-convex functions on time scales is established. The applicability of our results ranges from Optimization problems to Calculus of Variations and to Economics. Application to the Calculus of Variations on time scales is discussed.

ON FUNCTIONS STARLIKE WITH RESPECT TO n-PLY SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS

  • Malik, Somya;Ravichandran, Vaithiyanathan
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1025-1039
    • /
    • 2022
  • For given non-negative real numbers 𝛼k with ∑mk=1 𝛼k = 1 and normalized analytic functions fk, k = 1, …, m, defined on the open unit disc, let the functions F and Fn be defined by F(z) := ∑mk=1 𝛼kfk(z), and Fn(z) := n-1n-1j=0 e-2j𝜋i/nF(e2j𝜋i/nz). This paper studies the functions fk satisfying the subordination zf'k(z)/Fn(z) ≺ h(z), where the function h is a convex univalent function with positive real part. We also consider the analogues of the classes of starlike functions with respect to symmetric, conjugate, and symmetric conjugate points. Inclusion and convolution results are proved for these and related classes. Our classes generalize several well-known classes and the connections with the previous works are indicated.

TWO POINTS DISTORTION ESTIMATES FOR CONVEX UNIVALENT FUNCTIONS

  • Okada, Mari;Yanagihara, Hiroshi
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.957-965
    • /
    • 2018
  • We study the class $C{\mathcal{V}} ({\Omega})$ of analytic functions f in the unit disk ${\mathbb{D}}=\{z{\in}{\mathbb{C}}$ : ${\mid}z{\mid}$ < 1} of the form $f(z)=z+{\sum}_{n=2}^{\infty}a_nz^n$ satisfying $$1+\frac{zf^{{\prime}{\prime}}(z)}{f^{\prime}(z)}{\in}{\Omega},\;z{\in}{\mathbb{D}}$$, where ${\Omega}$ is a convex and proper subdomain of $\mathbb{C}$ with $1{\in}{\Omega}$. Let ${\phi}_{\Omega}$ be the unique conformal mapping of $\mathbb{D}$ onto ${\Omega}$ with ${\phi}_{\Omega}(0)=1$ and ${\phi}^{\prime}_{\Omega}(0)$ > 0 and $$k_{\Omega}(z)={\displaystyle\smashmargin{2}{\int\nolimits_{0}}^z}{\exp}\({\displaystyle\smashmargin{2}{\int\nolimits_{0}}^t}{\zeta}^{-1}({\phi}_{\Omega}({\zeta})-1)d{\zeta}\)dt$$. Let $z_0,z_1{\in}{\mathbb{D}}$ with $z_0{\neq}z_1$. As the first result in this paper we show that the region of variability $\{{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0)\;:\;f{\in}C{\mathcal{V}}({\Omega})\}$ coincides wth the set $\{{\log}\;k^{\prime}_{\Omega}(z_1z)-{\log}\;k^{\prime}_{\Omega}(z_0z)\;:\;{\mid}z{\mid}{\leq}1\}$. The second result deals with the case when ${\Omega}$ is the right half plane ${\mathbb{H}}=\{{\omega}{\in}{\mathbb{C}}$ : Re ${\omega}$ > 0}. In this case $CV({\Omega})$ is identical with the usual normalized class of convex univalent functions on $\mathbb{D}$. And we derive the sharp upper bound for ${\mid}{\log}\;f^{\prime}(z_1)-{\log}\;f^{\prime}(z_0){\mid}$, $f{\in}C{\mathcal{V}}(\mathbb{H})$. The third result concerns how far two functions in $C{\mathcal{V}}({\Omega})$ are from each other. Furthermore we determine all extremal functions explicitly.

Convex hulls and extreme points of families of symmetric univalent functions

  • Hwang, J.S.
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 1996
  • Earlier in 1935[12], M. S. Robertson introduced the class of quadrant preserving functions. More precisely, let Q be the class of all functions f(z) analytic in the unit disk $D = {z : $\mid$z$\mid$ < 1}$ such that f(0) = 0, f'(0) = 1, and the range f(z) is in the j-th quadrant whenever z is in the j-th quadrant of D, j = 1,2,3,4. This class Q contains the subclass of normalized, odd univalent functions which have real coefficients. On the other hand, this class Q is contained in the class T of odd typically real functions which was introduced by W. Rogosinski [13]. Clearly, if $f \in Q$, then f(z) is real when z is real and therefore the coefficients of f are all real. Recently, it was observed by Y. Abu-Muhanna and T. H. MacGregor [1] that any function $f \in Q$ is odd. Instead of functions "preserving quadrants", the authors [1] have introduced the notion of "preserving sectors".

  • PDF

SOME EXTENSION RESULTS CONCERNING ANALYTIC AND MEROMORPHIC MULTIVALENT FUNCTIONS

  • Ebadian, Ali;Masih, Vali Soltani;Najafzadeh, Shahram
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.911-927
    • /
    • 2019
  • Let $\mathscr{B}^{{\eta},{\mu}}_{p,n}\;({\alpha});\;({\eta},{\mu}{\in}{\mathbb{R}},\;n,\;p{\in}{\mathbb{N}})$ denote all functions f class in the unit disk ${\mathbb{U}}$ as $f(z)=z^p+\sum_{k=n+p}^{\infty}a_kz^k$ which satisfy: $$\|\[{\frac{f^{\prime}(z)}{pz^{p-1}}}\]^{\eta}\;\[\frac{z^p}{f(z)}\]^{\mu}-1\| <1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. And $\mathscr{M}^{{\eta},{\mu}}_{p,n}\;({\alpha})$ indicates all meromorphic functions h in the punctured unit disk $\mathbb{U}^*$ as $h(z)=z^{-p}+\sum_{k=n-p}^{\infty}b_kz^k$ which satisfy: $$\|\[{\frac{h^{\prime}(z)}{-pz^{-p-1}}}\]^{\eta}\;\[\frac{1}{z^ph(z)}\]^{\mu}-1\|<1-{\frac{\alpha}{p}};\;(z{\in}{\mathbb{U}},\;0{\leq}{\alpha}<p)$$. In this paper several sufficient conditions for some classes of functions are investigated. The authors apply Jack's Lemma, to obtain this conditions. Furthermore, sufficient conditions for strongly starlike and convex p-valent functions of order ${\gamma}$ and type ${\beta}$, are also considered.

ON A CERTAIN CLASS OF p-VALENT UNIFORMLY CONVEX FUNCTIONS USING DIFFERENTIAL OPERATOR

  • Lee, S.K.;Khairnar, S.M.;Rajas, S.M.
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2011
  • In this paper, using differential operator, we have introduce new class of p-valent uniformly convex functions in the unit disc U = {z : |z| < 1} and obtain the coefficient bounds, extreme bounds and radius of starlikeness for the functions belonging to this generalized class. Furthermore, partial sums $f_k(z)$ of functions $f(z)$ in the class $S^*({\lambda},{\alpha},{\beta})$ are considered. The various results obtained in this paper are sharp.

PRODUCT AND CONVOLUTION OF CERTAIN UNIVALENT FUNCTIONS

  • Jain, Naveen Kumar;Ravichandran, V.
    • 호남수학학술지
    • /
    • 제38권4호
    • /
    • pp.701-724
    • /
    • 2016
  • For $f_i$ belonging to various subclasses of univalent functions, we investigate the product given by $h(z)=z{\prod_{i=1}^{n}}(f_i(z)/z)^{{\gamma}_i}$.The largest radius ${\rho}$ is determined such that $h({\rho}z)/{\rho}$ is starlike of order ${\beta}$, $0{\leq}{\beta}$ < 1 or to belong to other subclasses of univalent functions. We also determine the sharp radius of starlikeness of order ${\beta}$and other radius for the convolution f*g of two starlike functions f, g.

STRONG DIFFERENTIAL SUBORDINATION AND APPLICATIONS TO UNIVALENCY CONDITIONS

  • Antonino Jose- A.
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.311-322
    • /
    • 2006
  • For the Briot-Bouquet differential equations of the form given in [1] $${{\mu}(z)+\frac {z{\mu}'(z)}{z\frac {f'(z)}{f(z)}\[\alpha{\mu}(z)+\beta]}=g(z)$$ we can reduce them to $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$ where $$v(z)=\alpha{\mu}(z)+\beta,\;h(z)={\alpha}g(z)+\beta\;and\;F(z)=f(z)/f'(z)$$. In this paper we are going to give conditions in order that if u and v satisfy, respectively, the equations (1) $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$, $${{\mu}(z)+G(z)\frac {v'(z)}{v(z)}=g(z)$$ with certain conditions on the functions F and G applying the concept of strong subordination $g\;\prec\;\prec\;h$ given in [2] by the author, implies that $v\;\prec\;{\mu},\;where\;\prec$ indicates subordination.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS

  • BANSAL, DEEPAK;MAHARANA, SUDHANANDA;PRAJAPAT, JUGAL KISHORE
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1139-1148
    • /
    • 2015
  • The estimate of third Hankel determinant $$H_{3,1}(f)=\left|a_1\;a_2\;a_3\\a_2\;a_3\;a_4\\a_3\;a_4\;a_5\right|$$ of the analytic function $f(z)=z+a2z^2+a3z^3+{\cdots}$, for which ${\Re}(1+zf^{{\prime}{\prime}}(z)/f^{\prime}(z))>-1/2$ are investigated. The corrected version of a known results [2, Theorem 3.1 and Theorem 3.3] are also obtained.