• 제목/요약/키워드: $F_0$-space

검색결과 590건 처리시간 0.03초

ON A FUZZY BANACH SPACE

  • Rhie, G.S.;Hwang, I.A.
    • 충청수학회지
    • /
    • 제13권1호
    • /
    • pp.71-78
    • /
    • 2000
  • The main goal of this paper is to prove the following theorem ; Let (X, ${\rho}_1$) be a fuzzy normed linear space over K and (Y, ${\rho}_2$) be a fuzzy Banach space over K. If ${\chi}_{B_{{\parallel}{\cdot}{\parallel}}}{\supseteq}{\rho}*$, then (CF(X,Y), ${\rho}*$) is a fuzzy Banach space, where ${\rho}*(f)={\vee}{\lbrace}{\theta}{\wedge}\frac{1}{t({\theta},f)}\;{\mid}\;{\theta}{\in}(0,1){\rbrace}$, $f{\in}CF(X,Y)$, $B_{{\parallel}{\cdot}{\parallel}}$ is the closed unit ball on (CF(X, Y), ${\parallel}{\cdot}{\parallel}$ and ${\parallel}f{\parallel}={\vee}{\lbrace}P^2_{{\alpha}^-}(f(x))\;{\mid}\;P^1_{{\alpha}^-}(x)=1,\;x{\in}X{\rbrace}$, $f{\in}CF(X,Y)$, ${\alpha}{\in}(0,1)$.

  • PDF

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

  • Paokanta, Siriluk;Shim, Eon Hwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권3호
    • /
    • pp.219-227
    • /
    • 2018
  • In this paper, we solve the additive ${\rho}$-functional equations $$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < 1, and $$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive ${\rho}$-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

SELF-SIMILAR SOLUTIONS OF ADVECTION-DOMINATED ACCRETION FLOWS REVISITED

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권2호
    • /
    • pp.139-146
    • /
    • 2005
  • A model of advection-dominated accretion flows has been highlighted in the last decade. Most of calculations are based on self-similar solutions of equations governing the accreting flows. We revisit self-similar solutions of the simplest form of advection-dominated accretion flows. We explore the parameter space thoroughly and seek another category of self-similar solutions. In this study we allow the parameter f less than zero, which denotes the fraction of energy transported through advection. We have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats ${\gamma}$ satisfies 1 < ${\gamma}$ < 5/3 for O ${\leq}$ f ${\leq}$ 1. On the other hands, in wind solutions a rotating disk does not exist. 2. For f < 0, in real ADAF solutions with ${\epsilon}$ greater than zero ${\gamma}$ requires rather exotic range, that is, ${\gamma}$ < 1 or ${\gamma}$ > 5/3. When -5/2 < ${\epsilon}$' < 0, however, allowable ${\gamma}$ can be found in ${\gamma}$ < 5/3, in which case 4{\Omega}_0$,_ is imaginary. 3. For a negative $u_0$,+ with f > 0, solutions are only allowed with exotic ${\gamma}$, that is, 1 < ${\gamma}$ or ${\gamma}$ > (5f/2-5/3)/(5f/2-1)when O < f < 2/5, (5f/2-5/3)/(5f/2-1) < ${\gamma}$ < 1 when f > 2/5. Since ${\epsilon}$' is negative, 4{\Omega}_0$,+ is again an imaginary quantity. For a negative $u_0$,+ with f < 0, ${\gamma}$ is allowed in 1 < 7 < (5|f|/2 + 5/3)/(5|f|/2 + 1). We briefly discuss physical implications of what we have found.

GENERALIZED FOURIER-WIENER FUNCTION SPACE TRANSFORMS

  • Chang, Seung-Jun;Chung, Hyun-Soo
    • 대한수학회지
    • /
    • 제46권2호
    • /
    • pp.327-345
    • /
    • 2009
  • In this paper, we define generalized Fourier-Hermite functionals on a function space $C_{a,b}[0,\;T]$ to obtain a complete orthonormal set in $L_2(C_{a,b}[0,\;T])$ where $C_{a,b}[0,\;T]$ is a very general function space. We then proceed to give a necessary and sufficient condition that a functional F in $L_2(C_{a,b}[0,\;T])$ has a generalized Fourier-Wiener function space transform ${\cal{F}}_{\sqrt{2},i}(F)$ also belonging to $L_2(C_{a,b}[0,\;T])$.

Common Fixed Point Theorems in Probabllistic Metric Spaces and Extension to Uniform Spaces

  • Singh, S.L.;Pant, B.D.
    • 호남수학학술지
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 1984
  • Let(X, $\Im$) be a probabilistic metric space with a t-norm. Common fixed point theorems and convergence theorems generalizing the results of Ćirić, Fisher, Sehgal, Istrătescu-Săcuiu and others are proved for three mappings P,S,T on X satisfying $F_{Pu, Pv}(qx){\geq}min\left{F_{Su,Tv}(x),F_{Pu,Su}(x),F_{Pv,Tv}(x),F_{Pu,Tv}(2x),F_{Pv,Su}(2x)\right}$ for every $u, v {\in}X$, all x>0 and some $q{\in}(0, 1)$. One of the main results is extended to uniform spaces. Mathematics Subject Classification (1980): 54H25.

  • PDF

A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.527-540
    • /
    • 2010
  • We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss=\{f{\in}H(D):sup_D(1-|z|^2)ln(\frac{2}{1-|z|})|f'(z)|$<+$\infty$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$. The results generalize the known corresponding results on the composition operator and the pointwise multiplier on the logarithmic Bloch space ${\mathcal{L}\ss$ and the little logarithmic Bloch space ${\mathcal{L}\ss_0$.

Convolution product and generalized analytic Fourier-Feynman transforms

  • Chang, Seung-Jun
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.707-723
    • /
    • 1996
  • We first define the concept of the generalized analytic Fourier-Feynman transforms of a class of functionals on function space induced by a generalized Brownian motion process and study of functionals which plays on important role in physical problem of the form $ F(x) = {\int^{T}_{0} f(t, x(t))dt} $ where f is a complex-valued function on $[0, T] \times R$. We next show that the generalized analytic Fourier-Feynman transform of the convolution product is a product of generalized analytic Fourier-Feynman transform of functionals on functin space.

  • PDF

On the McShane integrability

  • Kim, Jin-Yee
    • 대한수학회논문집
    • /
    • 제11권2호
    • /
    • pp.377-383
    • /
    • 1996
  • For a given separable space X which contains no copy of $C_0$ and a weakly compact T, we show that a Dunford integrable function $f : [a,b] \to X$ is intrinsically-separable valued if and only if f is McShane integrable. Also, for a given separable space X which contains no copy of $C_0$, a weakly compact T and a Dunford integrable function f we show that if there exists a sequence $(f_n)$ of McShane integrable functions from [a,b] to X such that for each $x^* \in X^*, x^*f_n \to x^*f$ a.e., then f is McShane integrable. Finally, let X contain no copy of $C_0$. If $f : [a,b] \to X$ is McShane integrable, then F is a countably additive on $\sum$.

  • PDF