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CONVOLUTION PRODUCT AND GENERALIZED
ANALYTIC FOURIER-FEYNMAN TRANSFORMS

SEUNG JUN CHANG

ABSTRACT. We first define the concept of the generalized analytic Fouri
er-Feynman transforms of a class of functionals on function space in-
duced by a generalized Brownian motion process and study of function-
als which plays on important role in physical problem of the form

Fe={f o

where f is a complex-valued function on [0,T] x R. We next show that
the generalized analytic Fourier-Feynman transform of the convolution
product is a product of generalized analytic Fourier-Feynman transform
of functionals on function space.

1. Introduction

In various Feynman integration theories, the integrand of the Feyn-
man integral is a functional of the standard Wiener process. In [3,4]
Cameron and Martin investigated various linear transformations of the
standard Wiener measure. Since then many related papers have ap-
peared in the literature. The concept of an L analytic Fourier-Feynman
transform was introduced by Brue in [1]. In [3] Cameron and Storvick
introduced an L, analytic Fourier-Feynman transform. In [10] Johnson
and Skoug developed an L, analytic Fourier-Feynman transform theory
for 1 < p < 2 which gave various relationships between Ly and L, the-
ories. In this paper we extend the ideas from the Wiener processes to
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more general stochastic processes. We note that the Wiener process is
free of drift and is stationary in time. However, the stochastic process
considered in this paper is a process subject to drift and is nonstationary
in time. We first define the concept of the generalized analytic Fourier-
Feynman transforms of a class of functionals on function space induced
by a generalized Brownian motion process and study a class of function-
als which plays an important role in physical problem of the form

T
F(z) = exp{A f(t,z(t))dt}

where f is a complex-valued function on [0, 7] x R such that f(#,-) is in
Ly(R) for almost all t € [0,T]. We next show tha- the generalized an-
alytic Fourier-Feynman transform of the convoluticn product is a prod-
uct of generalized analytic Fourier-Feynman transform of functionals on
function space.

2. Definitions and preliminaries

Let D = [0, T} and let (22, B, P) be a probability measure space. A real
valued stochastic process X on (2, B, P) and D is called a generalized
Brownian motion process if X(0,w)=0 a.e. and for 0 <ty <t; < --- <
tn < T, the n-dimensional random vector (X(#;,w),- - -, X(t,,w)) is
normal distributed with the density function

K(t,7) = ((2m)" T]b(t,) = b(t, 1)~

]

LG ((n; — alt;)) = (nj_1 — alt;_)))?
"Xp{'3z b(t,) — b(t; 1) }

where 7 = (1. ,n,), 70 = 0, a(-) is a real valued continuous function
with a(0) = 0, and b(-) is a strictly increasing continuously differentiable
real valued function with 5(0) = 0.
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As explained in [15, p.18-20], X induces a probability measure g on
the measurable space (R”, B?) where RP is the space of all real valued
functions z(t), t € D, and BP is the smallest o-algebra of subsets of R”
with respect to which all the coordinate evaluation maps e;(xr) = z(t)
defined on R” are measurable. The triple (RP, BP, 1) is a probability
measure space.

We note that the generalized Brownian motion process X determined
by b(-) is a Gaussian process with covariance function r(s,t) = min{b(s),
b(t)}. By Theorem 14.2 [15, p.187], the probability measure u induced
by X, taking a separable version, is supported by C}[0,T](=the Ba-
nach space of continuous functions z on [0,7] with x(0)=0 under the
sup norm). Hence (Cy[0,T], B(C,[0,T]), ) is the function space in-
duced by X where B(C[0,T]) is the Borel o-algebra of Cy[0,T]. Let
W be a stochastic process on (C4[0, 7], B(Cy[0,T]), ) and D defined by
Wi(t,x) = z(t), t € D, z € C3[0,T]. Then W is a generalized Brown-
ian motion process whose the sample space is C}[0,T]. We denote the
function space integral of a B(C}[0,T])- measurable function F' by

/ F(r)du(z)
Cv[0,T]

whenever the integral exists.

A subset E of C4[0,T] is said to be scale invariant measurable [11]
if pE € B(C3[0,T)) for each p > 0. A scale-invariant measurable set
N is said to be scale-invariant null if p(pN) = 0 for every p > 0. A
property which holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-a.e.).

Next we give the definitions of the generalized analytic Feynman in-
tegral and the generalized analytic Fourier-Feynman transform.

DEFINITION 2.1. Let C, C4, and C denote respectively the complex
numbers, the complex numbers with positive real part, and the nonzero
complex numbers with nonnegative real part. Let F' be a complex-valued
scale-invariant measurable function on C3[0,T] such that the function
space integral

IO = /C RCRETIE
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exists for all A > 0. If there exists a function J*()), analytic in Cs
such that J*(A) = J(A) for all A > 0, then J*(X\' is defined to be the
analytic function space integral of F' over Cy[0, T] with parameter A, and
for A € C; we write

E*™(F) = J*(A).

Let g # 0 be a real number and let F be a function such that E*' (F)ex-
ists for all A € C,. If the following limit exists, we call it the generalized
analytic Feynman integral of F with parameter ¢ and we write

Errle(Fy = Jim B2 (F)

A——1gq
where A approaches —ig through C,.

DEFINITION 2.2,

i) Let F be a complex valued scale-invariant measurable functional on
Cy[0,T). For A € C; and y € Cy[0, TY, let

any
(2.2) TN = [ Fa e o)

Co[0.7]
ii) Given a number p with 1 < p < oo, p and p' will always be related
by 1/p+1/p' = 1.
1) Let 1 < p < 2 and let {H,} and H be scale-invariant measurable
functionals such that for each p > 0,

(2.3) lim |Hn(py) — H(py)|P dp(y) = 0.
n—oc C“b [017—1]

Then we write
(2.4) l-i-m. (WP Y (H,) ~ H

and we call H the scale invarinat limit in the mean of order p. A similar
definition is understood when n is replaced by the continuously varying
parameter A.

We finally ready to state the definition of the generalized L, ana-
lytic Fourier-Feynman transform and our definition of the convolutlon
product [cf, 5,10].
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DEFINITION 2.3. Let g # 0 be real number. For 1 < p < 2 we define
the generalized L, analytic Fourier-Feynman transform T;p )(F }of F, by
the formula

(25) (T (F)(w) = 1 - m (W INEDW)
whenever this limit exists for all A € C;. We define the generalized
L,-analytic Fourier-Feynamn transform Tq(l)(F ) of F', by the formula

(26) (TE)) = lim, (TA(F)y)

for s-a.e. y on C,[0,7]. We note that for 1 < p < 2, Tép)(F) is defined
only s-a.e.. We also note that if Tq(p) exists and if F; = F3 then Tq(p)(Fg)
exists and TP (Fy) = TP (F).

Now we give the definition of the convolution product for complex-
valued measurable functionals on C3[0, T}

DEFINITION 2.4. Let F and G be complex-valued measurable func-
tionals on C3[0,T]. For A € Cy4, we define the convolution product of
two functionals F(z) and G(z) to be

o PG du(e),  AeCy

R V) V2
2.7 FxG = anjq yte — 7
(2.7) ( )aly) g F(y\/§ )G(y\/§ )du(z),

A== —1q, g€ R—{0}

if the integral in the right right hand side exists.
NOTATION.. When A = —iq, we will denote (F x G)» by (F * G),.

3. Generalized analytic Fourier-Feynman transforms

Let p be areal number with 1 < p < 2 and let r € (2p/(2p—1), o). Let
L,-([0,T] x R) be the space of all complex-valued Lebesgue measurable
functions f on [0,7] x R such that f(¢,-) is in L,(R) for almost all
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t € [0,7] and as a function of ¢, || f(¢, Np is in L.([0,T]). The second
class A = A,, of functionals is defined as follows : A functional F(z)
belong to A if

T
(3.1) F(z)= exp{'/0 f(t,x(t))dt}

where f € L,.([0,T] x R). Then F(r) is defined s-a.e. and is scale-
invariant measurable.

THEOREM 3.1. Let F € A be given by (3.1) with f € Ly ([0,T] xR).
Then TA\(F) exists for all A\ € C and is given by
(3.2)

(TA(F))(y)

+§1/Anm/mn I Kzr(b(m ) [ )

1=1

_exp{_muj ~A"2a(t) = (w1 = A Falt_0))? H e
2(6(t;) — b(t; 1))

where A, (T) = {t = (¢, - ) €[0T :0<t; <ty <+ < ¢, < T},
U= (uy, - ,uy,), and tg = 0 = u,.

PROOF. Note that

T
(3.3) { ft, z(t) dt}
0

Hence by using the Fubini theorem, the change of variable theorem,
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(2.2), and (3.3), we have for all A > 0,
(3.4)
(TA(F)(y)

=/ FOA™Y22 4 y)du(z)
Cb[() T]

s S 1/A TT [ A ¥ty + w0, e

(T)] 1

‘”Z/A oo 11 3 [ (s e (tJ--l)))%f“"”"'”“"”

oo f A = AT Fa(t) — (w1 ~ATTalt 0N V] g
"{ 2(6(1;) — (1 _ 1)) }]d -

Thus by analytic continuation in A, we have that equation (3.2) holds
throughout C.

"THEOREM 3.2. Let F € A be as in Theorem 3.1. Then for all 1 <
p < 2, the Fourier-Feynman transform T;P)(F) exists for all ¢ # 0 and
is given by the formula
(3.5)

(TSP (F)(v)

:]+§/H<T)/mn ﬁ[(%(b () —.qb( ti-1)) )%mj’uj tulty)

ig((uy — ()Pa(ty)) = (w51~ () Falt_DD2\]
exp 266, — b)) e

where A,(T) and @ are as in Theorem 3.1.

PRroOOF. By [10] and [11], Tq(p)(F) exists for all real ¢ # 0 and i1s
scale-invariant measurable. Since ®(z) = exp{z} is an entire function of
order 1 and f € L,.([0,T] x R), we can easily show that for all ¢ € R,

n

/A (T)/" af* H[(%(b(tj) - b(tj_l))>% f(tf’”f)‘]dﬁdk 0.

1=1

Thus for all y € Cp[0,T] the series on the right hand side of equation
(3.5) converges absolutely and hence uniformly in ¢ on compact subsets
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of R — {0}. Moreover the series converges in the L,(C[0,7]) mean.
Hence the representation (3.5) for Tq(p)(F) follows from equation (3.2).

4. Convolution products and transforms of convolutions

In this section for any F,G € A, the first theorem gives a series
representation for the convolution product of F and G and the second
theorem gives a series representation for Th(F * G .

THEOREM 4.1. Let F.G € A be given by
(4.1)

T T
F(z) :exp{/{ f(t, :r(t))dt} and G(x) =exp{/0 g(t,r(t))dt}

where f.g € L,.{([0,T] x R). Then for all A € C4. the convolution
product (F x G), exists and is given by the formula

(4.2)
(F * G)/\

(¥)
00 n A %
_]+,§[An(T)-/I&" - [(27r(b(tj)—b(ty—1)))

7=1

o {_A((u,- — A Fa(t)) — (uyy - A-%am_l))ﬂ}
P 20b(t5) = b(t; 1))

t; u; ) - us .
' {f<tjv 'y(J*\)/;—J‘) + g(t]‘, u J\)/'—l-‘i) }] didt.

PROOF. By using the Fubini theorem, the change of variable theorem,
and (2.7), we have for all \ > 0,

(F*G)i(y)

_ y+r%z) (y—r%z)d .
“/c,,[o,ﬂF< vz )T ) ki)
_ T y(t)+)\"%1'(t) }
ool [ o (n Y
T v __/\—1—
ool [ oL

— T y(t)-i-/\_%z:(t) ( y(t)—)_%z(t))] }
—/c,,[o.”r] exp{./o [f(t’ _T>+g ¢ )|k
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:/cb[o,T]{1+,§[/(]T[f(t’y(tH\j;x(t))
(2
:1+§An(T)/cb[o,T]Jlj[f(tj’y(th;i_%z(tj))
+g(tj,y(tﬂ—%"%z(‘ﬂ)]du(z)dt
:1+§/H(T) E" f[l[(zﬂ (b(2; )ib(tj—l)))i

(ot o, 220)
p{ Al ~ A-%az(zg ()t)j)— _(u;(;;_-rﬁ—%a(n_l))f }] daat

Hence by analytic continuation in A, we have the equation (4.2) holds
throughout C,.

Now by using Theorem 4.1 for all F,G € A, we have a series repre-
sentation for T\ (F * G)y.

THEOREM 4.2. Let f, g, F and G be as in Theorem 4.1. Then for all
A € C4, the transform Ty(F * G)) of convolution product exists and is
given by the formula
(4.3)

(TA(F * G)»)(z2)

*1+Z/A (T)/szn ot [(27r b(tJ)ib(‘J 1)))

(st + B e+ gt haty) + L)

exp{ -2 A~ Fa(t;)) — (vi-1 ~ AHa(t;1))?
P 2(b(;) — b(t; 1))

A = AT Ha(y) = (rjor = A" Fa(t; 1)) Fdidi
206(4;) - b(t; 1) }]d dodt.
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PROOF. By using the Fubini theorem, the change of variable theorem,
(3.5), and (4.2), we have for all A > 0,
(4.4)
(TA(F * G)x)(2)

:/ (F*G)A(,\_%z—i—z)du(:c)
Cy[0,T]

- +§;/Anm/n /c,,[o,ﬂ Jill[(zw(b(mib(tj_l))) |

e M = AT a(ty) — (uyy = A" Fa(t;_y)))?
"{ 2(b(t;) — b(t; 1)) }

-{f(tj, A_fz(t]-)\-{/-;(tj)-i-u]‘) +g<t], A_iz(tj);:;z(tj) — uj)}d,u(z)]dﬂd{‘

oo n A
=1+ nz::l /AH(T)/L&Z" ],1;11[<27r(b(tj) - b(/'j—l)))

, A5 = A Fa(t) — (uy — A "%a(t; 1))
e"p{ 2(6(1;) = b(1; 1))

My = A Za(t)) = (w, oy — A-%auj_x)))?}
2(b(1;) — b(t, 1))

: {f(tjs Z—“”—t—}%) n g<z]-, Z—(ﬂ)—i/g—iﬂ) }Jdlmﬁdf

Now, in the last equation which appears in the above equation, let

Cwjtuy (V2 - 2)A a(tj)
V2

and .
wy —uj + \/5/\_511(;!‘1-)
V2

T]‘ = T]'(t) =
then we have

(wj = A7a(t;)) + (u; = A"*a(t;))

V2

vy — /\_%a(tj) =

and 1 :
— AT2a(t;)) — (u; — A" 2a(t;))
V2
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and so the Jacobian of this transformation is one and
((uj = A~%a(t;)) — (uj—1 — A" 7a(t; 1))
+((w; — AT Fa(t;)) — (wj_1 — A" Fa(t;_1)))?
= ((v; = A72a(t;)) — (vjoy — A" Fa(t; 1)))?
+ ((r; = A~ 2a(t ) = (rj_1— A~ 2a<tJ )k

for j = 1,2,--- ,n. Substituting this expression in the last equation of
(4.4), then we have for all A > 0,

(T5(F * G)a)(2)

:1+§j‘1/ (T)/m?" -—1[(2" (b(t; )ib(f’ 1)))

~V?), 1 t5 _1
50+ BB e+ iy gty - ahat) + )
.ex,){~ (v = A% a(t;)) = (51 = A~ Fa(t;-1))’
2(b(t;) — b(t; 1))
_ M =AT%a(t) = (ryo1 = A2 a(tj_1)))* }]dmm
2(b(t5) — b(t;-1))
By analytic continuation in A, we have that equation (4.3) is holds
throughout C.

5. Generalized analytic Fourier-Feynman transforms of con-
volutions

In this section, we will show that there is a relationships involving
convolution products and analytic function space integrals and then the
generalized analytic Fourier-Feynman transform of the convolution prod-
uct is the product of the transforms. The result of this paper is stated
in the following three theorems.

THEOREM 5.1. If T\(F), TA(G), and T\(F * (), exists for A > 0,
then we have

(5.1) (TA(F « G)x)(z) = (TA(F»(\—%)(TA(G»( ).

&
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ProOF. By using (2.2) and (2.7) we have for 2 > 0,
(TA(F * G)x)(2)

:/ (F+G)(z + A Fy)duly)
Cy[0,T7]

:/cg[o,T]F(%jL/\_%(%l)G(’\%"’,\ \(/, T)) u(y)dp(z).

. . . . y+zr
Since two generalized Browian motion processes v = 7 and w =

y—x

V2

last equation which appears in the above equatior., we have

are independent Gaussian random variables, by applying to the

(TA(F x G)y)(z)

/020T (% %) ( Sl )dﬂ‘“)du(w
/Cb[OT (% v ) u(v (,,[07 (\;§+A:/§§ )du(w)

=(T( F))( (TA(G N(
Hence we complete the proof.

By using Theorem 5.1, we have a relationships involving convolution
products and analytic function space integrals.

THEOREM 5.2. Let F and G be as in Theoremn 4.1. Then we have
forall A € Cy,

Py

(5.2) (TA(F * G)2)(=) = (DD (5) (THGEN(5):

ProoOF. By Theorem 5.1, equation (5.2) holds for all A € C. Since
TA\(F), Tx(G), and Ty(F * G)x have analytic extension throughout C,,
we have the desired result.

In the following theorem, we give a convenient formula for evaluating
the generalized analytic Fourier-Feynman transform of the convolution
product.
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THEOREM 5.3. Let f,g,F and G be as in Theorem 4.1. Then for all
real ¢ # 0 and 1 < p < 2, we have

(53)  (TPF=G))(e) = (TPEN( NG ()
Proo¥F. In view of the proof of Theorem 3.2, the series expansions

for (T;P)(F))(%) and (T;P)(G))(—%) both converges absolutely for

all z € C4[0,T] and hence the right hand side of (5.3) is a bounded
continuous function of A on Cy for all z € C3[0, T] Thus by using (5.1),
Tq(JD )(F * (), exists and we have the desired equation (5.3) for all p and
q.

COROLLARY 5.4. Let f and F be as in Theorem 4.1. Then for all
qg#0and1<p<2 we have

(TP(F « F))(=) = (TP E)( S5

REMARK. Since T)(F) and T)(G) are easier to calculate than are
(F * G)x and T\(F * G), the formula (5.3) is very useful.

ExaMPLES. The following examples demonstrate that Theorem 5.3
above is useful to evaluate the transform of convolutions. By using
equation (5.3), we need only transforms of the various functionals F
on function space C,[0,T).

Let v(t) be a real valued function on [0,T] with v € L3[0,T], k € C,
and z € C4[0,T]. Then we have the followings:

I Fi(z) =1, then (T\(Fy))(2) =
2. For any z € C4[0,T], let Fy(z) = fo (t)dz(t). Then by using (2.2),
we have

T T
(TA(FQ))(Z):A—%A v(t)da(t)—i—/0 v(t)dz(t).

In particular, if {z(t),t € [0,T]} is the standard Wiener processes, then
a(t) = 0 and hence we have

T
(TA(F2)(z) = / o(t)dz(2).
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3. For any x € C4[0,T], let F3(z) = fo 2(t)dt. Then by using the
change of variable theorem, the Fubini theorem, and (2.2), we have

T
mENE = [z

-3 + 2%(t)] dt.

In particular, if {z(¢),t € [0,T]} is the standard Wiener processes, then
a(t) = 0 and b(¢) = ¢t and hence we have

T2 T
(TFs))(2) = 57 + / 2(t)at,
=~ 1]

4. For any = € C4[0, T, let Fy(x Ul) ] Since fo v(t)dx(t)

is Gaussian with mean fo v ,)da( ) and variance j) v?(t)db(t), by using
this to the last equation which appears in the above equation. we have
(TA(F4))(z)

T T T T
:[/O v(t)dz(t)] +2A—%/O v(t)dz(t)/o v(t)da(tu%/(} V2 (8)db(1).

In particular, if {z(t),t € [0, T]} is the standard Wiener processes, then
a(t) =0 and b(¢) = t and hence we have

2

| vll?

,
TEE = [ ndsn]+ L
0

9. For any x € C4[0, T, let Fs(z fo exp{x(t }dt. Then by using the
change of variable theorem, the Fub1n1 theorem, and (2.2) we have

" |
(T,\(Fs))(z):/ CXP{Z(t)+)\“%a(t) "W}dt
0 2

In particular, if {z(¢),t € [0,T]} is the standard Wiener processes, then
a(t) =0 and b(#) = ¢ and hence we have

,
TFNE) = [ en{an+ 5 bt
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6. For any z € C3[0,T), let Fg(z) = exp{k fOTv(t)dx(t)}. Then by using
the change of variable theorem, the Fubini theorem, and (2.2) we have

(TA(Fs))(2)

:exp{k/OTv(t)dz(t)—f—k)\"%‘/oy (t)da(t) +-§—;[/Tv2(t)db(t)}}.

In particular, if {z(t),t € [0,7T]} is the standard Wiener processes, then
a(t) = 0 and b(t) = t and hence we have

T 2 v 2
(TA(Fe))(z) = exp{k/o v(t)dz(t) + %—lz—'/{-“—}

7. For any z € C4[0,T), let Fr(z) = exp{k UO (t)dz(t) ] }. Then by
using the change of variable theorem, and the Fubmi theorem, and (2.2)
we have

1

2

o)
A - 2k(f v2(t)db(1))

BXP{( X 2k(JT kvz db(t))) [(A /OT v(t)dz(t)>2
+ (zzm/o v(t)da(t)/o v(t)dz(t)+(i/0T v(t)da(t))z)]}.

provided Re(k/)) < (fo (t)db(t))~2. In particular, if {x(t),t € [0, T}
is the standard Wiener processes, then a(t) = 0 and b(t) = t and hence
we have

(TalF)z) = (Fﬁn—vn_z)% e"p{ (s=r) (/ T“WZ(”Y}-

8. For any z € Cy|[0, T] let Fg(z) = exp{k fo z(t)dt}. Since fo x(t)dt is

Gaussian with mean fo )dt and variance given by M = fo fo min{b(s),
b(t)}dsdt. By using this to the last equation which appears in the above
equation, we have

(Tx(F7))(2) =

T T k2 M?
(TA(FB)‘)(Z)zexp{k/O z(t)dt—|~k)\'7/0 a(t)dt + 7 }
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In particular, if {z(¢),¢ € [0,T]} is the standard Wiener processes, then
a(t) = 0 and b(¢) = ¢ and hence we have M = fh fo min{s,t}dsdt =
373, Thus we have

T LT
mF) = ek [ s+ L

Now, by using the above examples, together wish equation (3. 3), we

can find the transforms T(p)(F *Fy )4 of convolutions (F;* Fy) for various
functionals Fj, Fi on function space Cy[0, T)for j k =1,2,---,8. For
examples,

(TP (Fp * Fy)y)(2)

:(/DTv(t)dz(t) + (é) /OTv(t)da(‘t))

T 2 . T T
(L/O v(t)dz(t)] +2(E) / v(t)dz(t’)/o‘ v(t)da(t)
T2
il e’ )

q

[Ny

Wi

(TP (Fy * Fs)o)(2)

N i\l (t)
_</0 [z (t)+2(5) z(t)a(t) + —=]d )

T i [T k[ v )db ()]
.exp{k/o v(t)dz(t)+k(§) /U v(t)da(t) + }

2q

REMARK. In view of the above examples, in order to obtain the gen-
eralized analytic Fourier-Feynman transforms of convolution product of
functionals on function space, we need only compute the transforms of
the various functionals F; on function space Cy0,7] for j = 1,2,--- 8.
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