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ABSTRACT

A model of advection-dominated accretion flows has been highlighted in the last
decade. Most of calculations are based on self-similar solutions of equations gov-
erning the accreting flows. We revisit self-similar solutions of the simplest form of
advection-dominated accretion flows. We explore the parameter space thoroughly and
seek another category of self-similar solutions. In this study we allow the parameter f
less than zero, which denotes the fraction of energy transported through advection. We
have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats
~ satisfies 1 < v < 5/3 for 0 < f < 1. On the other hands, in wind solutions a rotat-
ing disk does not exist. 2. For f < 0, in real ADAF solutions with € greater than zero
«y requires rather exotic range, thatis, ¥ < 1or-y > 5/3. When —5/2 < €’ < 0, how-
ever, allowable y can be found in v < 5/3, in which case g _ is imaginary. 3. For a
negative ug 4 with f > 0, solutions are only allowed with exotic v, that is, 1 < « or
v>(5f/2-5/3)/(5f/2—1)whenO0 < f < 2/5,(5f/2—-5/3)/(6f/2—-1)<v< 1
when f > 2/5. Since € is negative, Qo 4 is again an imaginary quantity. For a neg-
ative up 4 with f < 0,y is allowed in 1 < v < (5|f]/2 + 5/3)/(5|f]/2 + 1). We
briefly discuss physical implications of what we have found.
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1. INTRODUCTION

Accretion is one of the most important physical processes in astrophysics. Itis a widely accepted
idea that the accreting matter toward the central compact objects is a source of power of active galac-
tic nuclei (AGNs), and Galactic X-ray sources (see for a review, e.g., Frank, King, & Raine 2002).
This idea is also well-applicable to interpret many observations of astrophysical phenomena, such
as, proto-type stellar objects, (Suh 1996, Kenyon, Yi, & Hartmann 1996, Chang & Choi 2002), sym-
biotic stars (Lee & Park 1999), gamma-ray bursts (Brown et al. 2000). The most natural mode of ac-
cretion is through disks, geometrically thick or thin. There are three families of stable accretion disk
models studied upto date : cool and thin disk (Shakura & Sunyaev 1973), slim disk (Abramowicz
et al. 1988), and various versions of advection-dominated accretion flows (ADAF: Ichimaru 1977,
Narayan & Yi 1994, ADIOS: Xu & Chen 1997, Blandford & Begelman 1999, Turolla & Dullemond
2000, Misra & Taam 2001, CDAF: Stone, Pringle, & Begelman 1999, Narayan, Igumenshchev, &
Abramowicz 2000, Quataert & Gruzinov 2000, Abramowicz et al. 2002). Among these, a model
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of advection-dominated accretion flows (ADAFs) has been highlighted in recent years, particularly
to account for dim galactic nuclei in X-rays including Low-Ionization Nuclear Emission Resions
(LINERs), Low Luminosity AGNs (LLAGNSs), Sgr A* in our own Galaxy center (Narayan, Yi, &
Mahadevan 1995, Lasota et al. 1996, Ulvestad & Ho 2001, Chang & Choi 2003), and hard (low)
state of Low Mass X-ray binary systems (Esin et al. 2001).

These studies on ADAF-variations have been carried out mostly based on self-similar solutions
derived by Narayan & Yi (1994: hereafter NY94), in which all the unknown quantities scale as
powers of normalized distance from the central object by the gravitational radius, 7, in accretion
flows. Though it may be too simple to describe complete characteristics as a whole, such a self-
similar solution is easy both to handle and to understand. This is a reason why self-similar solutions
of accretion flows have been investigated in the first place by picking up the most essential key
feature of accretion flows to work on (e.g., NY94; Blandford & Begelman 1999, Wang & Zhou
1999, Narayan, Igumenshchev, & Abramowicz 2000, Medvedev & Narayan 2001). Though pursuing
global solutions and/or sophisticated features can be timely and valuable (e.g., Park 1995, 2001,
Honma 1996, Park & Ostriker 1999, 2001, Narayan, Kato, & Honma 1997, Mukhopadhyay &
Ghosh 2003, Lu, Li, & Gu 2004), looking at self-similar solutions is still of interests.

Self-similar solutions for various conditions have been studied by many authors. Even in the
case of ADAFs, equations of time-dependent quasi-spherical accretion are solved in a simplified one-
dimensional model neglecting the latitudinal dependence of the flow (Ogilvie 1999). Considering
ADAFs connected at a finite transition radius to an outer standard cool disk, a different power index
for the angular velocity 2 has been discovered (e.g., Honma 1996). A self-similar solution for self-
gravitating viscous disks is also studied (Mineshige & Umemura 1996, 1997, Mineshige, Nakayama,
& Umemura 1997, Bertin & Lodato 1999, Boss & Hartmann 2001). Another interesting study has
been done by Beloborodov & Illarionov (2001). They considered inviscid disk around black holes,
that is, spherical infalling onto the accretion disk.

In this paper we revisit self-similar solutions of the simplest ADAFs which NY94 studied, and
discuss other possible forms of accretion and their physical implications. We briefly review what
the problem is, and discuss solutions of equations in §2. We then describe what are missing parts
of self-similar solutions discussed earlier by NY94 in §3. And finally we conclude by summarizing
and making some comments in §4.

2. QUICK SUMMARY OF SELF-SIMILAR SOLUTIONS OF SIMPLE ADAF

In the following we briefly summarize what NY94 did. Advection-dominated accretion flows
are known to be quasi-spherical; therefore, they have implicitly assumed spherical symmetry in
the derivation. In fact, they discuss (Newtonian) accretion flows as polar-averaged, one-dimension
flows with only a radial coordinate ». They have considered a steady state, axisymmetric flow so
that /8t = 8/0¢ = 0. Mass is accreted by the central object with a rate M = —4nruH p, where
p is the volume density, u is the accretion velocity being negative for inflowing, H is the vertical
scale height which is assumed proportional to r such that H ~ ¢, /S2k, sound speed ¢, being the
isothermal sound speed and (2x being the Keplerian angular velocity. Note that the H given above
is always satisfied if one assumes a vertically stratified disk. For the viscosity v, they adopt the
prescription introduced by Shakura & Sunyaev (1973), where v is given as v = ac2 /Qk. They have
defined a parameter € = (5/3 —v)/(y—1), where -y is the ratio of specific heats. Another predefined
parameter f measures the degree to which the flow is advection-dominated. They defined ¢’ = ¢/ f,
which plays a crucial role in determining the nature of the flows as shown below. Note also that the
quantity f is designated as a positive quantity in their discussions for the inward advection flow.
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Four differential equations of steady state and axisymmetric accretion disk are given as follows:

%o,
du 2 1d, ,
U - Q% = ~Q%r o dr (pcs),
d@r?) 1 d (apcirPH dQ
& T oH@r\ 9k a@r )
ds 34 3¢ dc? 2 + -
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where notations follow conventional meanings.
Now self-similar solutions can be found for density p, radial accretion velocity u, angular ve-
locity 2, and isothermal sound speed c,. By substituting

p(r) = por?,
u(r) = uerd,
Qr) = Qor’,
a(r) = cyrd 2

into four basic equations describing accreting flows and by equating exponents of r in the various
terms, one obtains sets of algebraic equations of the exponents of r. By solving those algebraic
equations one can straightforwardly show that self-similar solutions exist if

p(r) = por~/2,
ur) = ur™'/?,
( ) QOT_3/2>
cg(r) = cor, 3)

with the radial coordinate scaled to the gravitational radius of the central mass, where

-MVGM
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where g = [(1 + 18a2/(2¢' + 5)2)1/2 1.
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Figure 1. Allowed regions of -y in the f — ~ plane for the condition of 2¢’ + 5 > 0 as uo,— has a negative sign.
The dotted curves represent solution of equations for «y (see text), the solid line and the dashed indicate v = 1
and v = 5/3, respectively. Note that Narayan & Yi (1994) discuss only when f is greater than zero. The area
enclosed by thick lines indicates the allowable y when —5/2 < €’ < 0 for a negative f value.

NY94 have taken up,_ as an inflow solution and discarded ug 4+ so that all other coefficients
listed in eq. 4 are real quantities. In this section all discussions are restricted to the case of ug,_.
Since g is always positive for real €', 2¢’ + 5 should also be greater than zero for an inflow solution.
Hence, + is given such that, for a positive f as they assumed, 1 < v < (5f/2—5/3)/(5f/2—-1)
when f < 2/5,andy < (5f/2—-5/3)/(5f/2— 1) ory > 1 when f > 2/5. Allowed regions in
the f — -y plane are shown marked with crosses in Fig. 1. It should be noted that there is one more
contingent condition, that is, £, - should be real for a rotating inflow solution. Therefore, ¢ must be
positive, rather than 2¢’ + 5 > 0. This constrains the allowed regions for a positive fto1 <y < 5/3
in the «y direction as shown with open circles in Fig. 2. It simply implies that self-similar solutions
for inflowing ADAFs exist with 1 < 4 < 5/3 when f > 0. Main properties of self-similar solutions
are as follows: Firstly, they seems to agree quite well with numerical solutions except regions close
to boundaries. It makes self-similar solutions useful and widely used. Secondly, when the ratio of
specific heats «y approaches 5/3 only the non-rotating flow is allowed in these self-similar solutions.
For when v = 5/3, € is equal to zero meaning Qo _ = 0 (see eq. 4). Thirdly, these flows, according
to the self-similar solutions, are convectively unstable and subject to outflows. These facts actually
lead to derivation of ADIOS and CDAF models.

It is worth making several remarks on the missing part of self-similar solutions of NY94 at this
point, which they failed to discuss in their original paper. Firstly, they briefly mentioned the case
of v > 5/3, and they referred to this second class of solutions as a rotating wind solution where
up,— > 0. However, when f > 0 and v > 5/3, there can be two possibile regimes. That is,
one is —5/2 < ¢ < 0 and the other is ¢ < —5/2. In the former case, one may still have an
accreting solution, and €2y _ is an imaginary quantity. In the latter case, one has a wind solution with
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Figure 2. Allowed regions of +y in the f — - plane for the condition of € > 0 as Qo,— is real, as well as ug, - has
a negative sign. The dotted curves represent solution of equations for -y (see text), the solid line and the dashed
indicate v = 1 and y = 5/3, respectively. Note that Narayan & Yi (1994) discuss only when f is greater than
zero.

ug,— > 0. This is what NY94 probably meant. But in this case, cgp,— and pp — become imaginary
quantities. Consequently, it turns out that figuring out v > 5/3 case under the condition of positive
f is not as simple as they mentioned. Secondly, if one allows a negative f in the ADAF self-similar
solutions, while keeping positive 2¢' + 5 so that ug _ is still negative (accreting inward), allowed
regions become v < 1 and v > (5|f|/2 + 5/3)/(5|f]/2 + 1), as shown marked with crosses in
Fig. 1. The negative f means cooling dominates over viscous heating for some reasons, which we
discuss later on. It may imply that if —5/2 < €’ < 0 then §g _ is imaginary with ~ smaller than
5/3, and yet greater than (5|f|/2 + 5/3)/(5|f|/2 + 1). Of course, even when 7 is greater than 5/3
an imaginary (2o, _ is possible. We suspect these cases can be regarded as an over-damped oscillator.
In this case, the infalling fluid is unable to make a complete rotation around the central object before
getting to the final destination in the sense that {2y .. is not physically defined. For positive ¢’ and
real {2y _, allowed region of -y satisfies y < 1 ory > 5/3, as shown in Fig. 2. In a sense, therefore,
for a negative f only possible self-similar solutions of simple ADAF equations with real quantities
are available only when + is greater than 5/3.

3. ANOTHER FAMILY OF SELF-SIMILAR SOLUTIONS OF ADAF

In this section we seek self-similar solutions in which the negative f can be accommodated. We
explore the case of ug 4 in this section, which NY94 discarded. Since g + 2 is always positive, there
exists an inflow solution, that is, negative ug 4, when 2¢' + 5 is less than zero (see eq. 4). In this case,
however, (J  becomes again an imaginary quantity since €' has a negative sign. We regard this case
as an over-damped oscillator, as discussed in the case of ug,_ with a negative f in the last section.
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Figure 3. Allowed regions of +y in the f — -y plane for negative ug,+. The dotted curves represent solution of
equations for -y (see text), the solid line and the dashed indicate v = 1 and v = 5/3, respectively.

To see possible range of «y for negative ug, 4+, we solve the inequality equation, 2¢' + 5 < 0. Allowed
regions of v in the f — -y plane are shown in Fig. 3. Solutions are obtained in three separate domains
of f, in which when f < 0, y should satisfy 1 < v < (5|f|/2+5/3)/(5|f|/2+ 1), when0 < f <
2/5,1 < yory> (5f/2—-5/3)/(5f/2—1),andwhen f > 2/5,(5f/2-5/3)/(5f/2-1) <y < 1,
as shown in Fig. 3 marked with dots. We note that only when f is less than zero smaller -y than 5/3
is available. It should be also noted that when f is greater than 2/5 possible -y range is smaller than
unity.

For a positive ug 4+, 2¢' + 5 should be greater than zero. In this case, however, sound speed ¢,0, +
and density pg,+ become imaginary quantities, which is hard to make a physical sense. Therefore,
as of the case of ug,_, self-similar solutions with positive radial velocity are unlikely to exist.

4. DISCUSSION AND CONCLUSION

We have revisited four basic equations for the simplest form of ADAFs, deriving self-similar
solutions of them. We attempt to find out any other missing family of self-similar solutions in the
setting similar to that of NY94. We take into account of possibility of negative f and consider
another branch of solutions, which is ignored by NY94. The transition of the advection factor f
from f ~ 0to f > 0 corresponds to the transition from the standard thin disk to the geometrically
thick disk. It happens when the accretion rate passes across ~ 7., where 1, is the critical mass
accretion rate below which the ADAF exists. On the other hand, the transition from f > 0to f < 0
occurs when the cooling dominates the viscous dissipation. Cooling may dominate under various
circumstances. For instance, if there is a source of enough soft photons (either from the central star,
or a flying-by star in the case of accretion disk around supermassive black holes) it can cool the disk
by comptonization (Chang 2001). It is acting like a negative f. Along the line of a negative f one
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may be interested in pursuing the possibility of the existence of a self-similar solution corresponding
to the Luminous Hot Accretion Flow (LHAF) solution for f < 0 (Yuan 2001). Or one may ask under
what condition of + the self-similar solution of LHAF exists.

‘We summarize our findings as follows:

1. For f > 0, ADAF solutions (any 1-dimensional accreting solution with advection) are re-
quired to satisfy 2¢’ + 5 > 0 due to negative uo, (inflow) and €’ > 0 due to real o _ at the same
time. This leads « to satisfy 1 < v < 5/3 for 0 < f < 1. In this case, all the quantities to describe
inflowing accretion disks are real quantities. Outflowing solutions, or positive ug,— are not a form of
rotating disk. When €' is given so as € < —5/2, ¢40,— and po,— turn out to be imaginary quantities.

2. For f < 0, self-similar ADAF solutions should satisfy 2¢ + 5 > 0 and ¢’ > 0 like the
case of positive f. When ¢’ > 0, allowable v is located at v < 1 ory > 5/3. Though all the
quantities to describe inflowing accretion disks are real quantities, the physical condition to allow
such an extreme v is difficult to realize physically. When —5/2 < €’ < 0, however, allowable ~y can
be found in v < 5/3 as can be seen in Fig. 1. Yet, in this case, (o _ is imaginary. We regard this
is the case where infalling material cannot make a complete rotation before being swallowed by the
central object.

3. For a negative ug 4+ with f > 0, €’ should satisfy 2¢' + 5 < 0. Solutions are allowed with
exotic vy, thatis, 1 < yory > (5f/2—5/3)/(5f/2—1)when0 < f < 2/5,(5f/2—-5/3)/(5f/2~—
1) <y < 1when f > 2/5. Since € is negative, Qo 4 is a imaginary quantity. For a negative ug 4
with f < 0, yis allowedin 1 < v < (5|f|/2+ 5/3)/(5|f|/2 + 1), as shown marked with dots in
Fig. 3. To make available smaller +y than 5/3, only negative f is allowable.

We have found no other rotating flows corresponding to negative f, under the condition of
v < 5/3, since the rotational velocity turns out to be an imaginary quantity. These are same for
both ug,— and ug . They end up before making a complete circle while accreted. Therefore,
these self-similar solutions cannot represent the most common form of accretion, that is, a rorating
disk. When the viscous heating is insufficient to compensate coolings, the hot accretion flows will
collapse. These solutions might describe a homologous collapse of a disk with viscosity. These two
solutions, however, may end up with the different surface density, etc. An interesting question to
ask is what could separate these two kinds of solutions. From Figs. 1 and 3, for a given value of f,
only difference is in the value of y. So when fluid comes into experiencing different environment
resulting in change in v, as a result of that accreting fluid may suddenly show different appearance.

On the other hand, a self-similar solution of ug — for rotating inflows may be allowed for a
negative f. In this case, v should be able to have extraordinary values such as, ¥y < 1 ory > 5/3.
There are no self-similar solutions of the NY94 form for 1 < v < 5/3. With the Baym-Bethe-
Pethick equation of state, -y can exceed 5/3 (Shapiro & Teukolsky 1983). It could be achieved when
the density is comparable to that of nucleus. We suspect that this might be a self-similar solution
corresponding to a neutrino cooling disk whose density is extremely high (e.g., Kohri & Mineshige
2002).
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