• Title/Summary/Keyword: $CuOH^+$

Search Result 1,046, Processing Time 0.03 seconds

CORRELATION BETWEEN MICROSTRUCTURE AND EXOTHERMIC REACTION KINETICS OF Al-CuO THERMITE NANOCOMPOSITE POWDERS FABRICATED BY CRYOMILLING

  • MINSEOK OH;KWANIL KIM;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.931-934
    • /
    • 2019
  • Al-CuO is a thermite material exhibiting the exothermic reaction only when aluminum melts. For wide spread of its application, the reaction temperature needs to be reduced in addition to the enhancement of total reaction energy. In the present study, a thermite nanocomposite with a large contact area between Al and CuO was fabricated in order to lower the exothermic reaction temperature and to improve the reactivity. A cryomilling process was performed to achieve the nanostructure, and the effect of composition on the microstructure and its reactivity was studied in detail. The microstructure was characterized using SEM and XRD, and the thermal property was analyzed using DSC. The results show that as the molar ratio between Al and CuO varies, the fraction of uniform nanocomposite structure was changed affecting the exothermic reaction characteristics.

Characteristics of Heavy Metal Ion Adsorbent Extracted from Crab Shell (Crab Shell로부터 추출한 중금속 흡착제들의 특성)

  • 현근우;이찬기;이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.46-55
    • /
    • 1999
  • This study compared the adsorption characteristics of heavy metal ions by crab shell, treated crab shell with 2N-HCl, treated crab shell with 4%-NaOH, chitin and chitosan.Using crushed crab shell, the heavy metal ions removal rates of $Cd^{2+}$ and $Zn^{2+}$ were about 70-80% in 45minutes, but the removal rates of $Cu^{2+}$, $Cr^{6+}$ and $Pb^{2+}$ was less than 10%, 10% and 30%, respectively. For the by-products crab shell by 2N-HCl treatment, it was shown that the removal rates of $Cu^{2+}$ and $Pb^{2+}$ were about 70-80% in 45minutes reaction. But, some problems were observed, that the contained protein in crab shell was changed into gel in the mixing solution after a few hours. For the by-products of crab shell by 4%-NaOH treatment, the removal rates of Pb and Zn were about 90% in 45 minutes, and those of capacity of chitin and chitosan powder was better than those of the other by-products. The more adding to the adsorbent dosages increased the removal rates, and the adsorption reaction was rapidly occurred in a few minute. Using 1.0 wt% chitin powder, the heavy metal removal rates were ordered $Cu^{2+}$(94%) > $Zn^{2+}$(89%) > $Cd^{2+}$(88%) > $Pb^{2+}$(77%) > $Cr^{6+}$(58%) in 45 minutes. Using 1.0 wt% chitosan powder, the heavy metal removal rates were ordered $Cu^{2+}$(99%) > $Pb^{2+}$(96%) > $Cd^{2+}$(79%) > $Zn^{2+}$(71%) > $Cr${6+}$(46%) in 45minutes. The degree of degree of deacetylation by prepared chitosan was 91%.The Freundlich adsorption isotherm of $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$, when it was applied to 1.0 wt% chitosan powder in minutes, can be acceptable very strictly. The equation constant (1/n) for $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$ were 0.54 0.41 and 0.23 respectively.

  • PDF

Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures (Polycarbosilane이 코팅된 SiC와 Cu 혼합분말의 상압소결에 의한 Cu-30 vol% SiC 복합재료의 제조)

  • Kim, Yeon Su;Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.337-341
    • /
    • 2016
  • Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at $200^{\circ}C$ was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to $1600^{\circ}C$ for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the ${\alpha}$-SiC phase; peaks for ${\beta}$-SiC were newly appeared. The formation of ${\beta}$-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial ${\alpha}$-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at $1000^{\circ}C$. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

The Effect of Citric Acid on Copper Chemical Mechanical Polishing (구연산이 Copper Chemical Mechanical Polishing에 미치는 영향)

  • Jung, Won-Duck;Park, Boum-Young;Lee, Hyun-Seop;Lee, Sang-Jic;Chang, One-Moon;Park, Sung-Min;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.565-566
    • /
    • 2006
  • Slurry used in metal chemical mechanical polishing normally consists of an oxidizer, a complexing agent, a corrosion inhibitor and an abrasive. This paper investigates effects of citric acid as a complexing agent for Cu CMP with $H_2O_2$ as an oxidizer. In order to study chemical effects of a citric acid, x-ray photoelectron spectroscopy were performed on Cu sample after Cu etching test. XPS results reveal that CuO, $Cu(OH)_2$ layer decrease but Cu/$Cu_2O$ layer increase on Cu sample surface. To investigate nanomechanical properties of Cu sample surface, nanoindentation was performed on Cu sample. Results of nanoindentation indicate wear resistance of Cu Surface decrease. According to decrease of wear resistance on Cu surface, removal rate increases from $285\;{\AA}/min$ to $8645\;{\AA}/min$ in Cu CMP.

  • PDF

A Review on the Bonding Characteristics of SiCN for Low-temperature Cu Hybrid Bonding (저온 Cu 하이브리드 본딩을 위한 SiCN의 본딩 특성 리뷰)

  • Yeonju Kim;Sang Woo Park;Min Seong Jung;Ji Hun Kim;Jong Kyung Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2023
  • The importance of next-generation packaging technologies is being emphasized as a solution as the miniaturization of devices reaches its limits. To address the bottleneck issue, there is an increasing need for 2.5D and 3D interconnect pitches. This aims to minimize signal delays while meeting requirements such as small size, low power consumption, and a high number of I/Os. Hybrid bonding technology is gaining attention as an alternative to conventional solder bumps due to their limitations such as miniaturization constraints and reliability issues in high-temperature processes. Recently, there has been active research conducted on SiCN to address and enhance the limitations of the Cu/SiO2 structure. This paper introduces the advantages of Cu/SiCN over the Cu/SiO2 structure, taking into account various deposition conditions including precursor, deposition temperature, and substrate temperature. Additionally, it provides insights into the core mechanisms of SiCN, such as the role of Dangling bonds and OH groups, and the effects of plasma surface treatment, which explain the differences from SiO2. Through this discussion, we aim to ultimately present the achievable advantages of applying the Cu/SiCN hybrid bonding structure.

The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis

  • Jung, Heon;Yang, Dae-Ryook;Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1241-1246
    • /
    • 2010
  • Ternary Cu/ZnO/$Al_2O_3$ catalysts were prepared by a co-precipitation method. The precursor structures were monitored during the aging. The first precipitate structure was amorphous georgeite, which transformed into the unknown crystalline structure. The transition crystalline structure was assigned to the crystalline georgeite, which was suggested with elemental analysis, IR and XRD. The final structure of precursors was malachite. The Cu surface area of the resulting Cu/ZnO/$Al_2O_3$ was maximized to be 30.6 $m^2$/g at the aging time of 36 h. The further aging rapidly decreased Cu surface areas of Cu/ZnO/$Al_2O_3$. ZnO characteristic peaks in oxide samples almost disappeared after 24 h aging, indicating that ZnO was dispersed in around bulk CuO. TOF of the prepared catalysts of the Cu surface area ranges from 13.0 to 30.6 $m^2/g_{cat}$ was to be 2.67 ${\pm}$ 0.27 mmol/$m^2$.h in methanol synthesis at the condition of $250^{\circ}C$, 50 atm and 12,000 mL/$g_{cat}$. h irrespective of the XRD and TPR patterns of CuO and ZnO structure in CuO/ZnO/$Al_2O_3$. The pH of the precipitate solution during the aging time can be maintained at 7 by $CO_2$ bubbling into the precipitate solution. Then, the decrease of Cu surface area by a long aging time can be prevented and minimize the aging time to get the highest Cu surface area.

Structural and Optical Properties of CuInS2 Thin Films Fabricated by Electron-beam Evaporation

  • Jeong, Woon-Jo;Park, Gye-Choon;Chung, Hae-Duck
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.7-10
    • /
    • 2003
  • Single phase CuInS$_2$ thin film with the strongest diffraction peak (112) at diffraction angle (2$\theta$) of 27.7$^{\circ}$ and the second strongest diffraction peak (220) at diffraction angle (2$\theta$) of 46.25$^{\circ}$was well made with chalcopyrite structure at substrate temperature of 70$^{\circ}C$. annealing temperature of 250$^{\circ}C$, annealing time of 60 min. The CuInS$_2$ thin film had the greatest grain size of 1.2 Um when the Cu/In composition ratio of 1.03, where the lattice constant of a and c were 5.60${\AA}$ and 11.12${\AA}$, respectively. The Cu/In stoichiometry of the single-phase CuInS$_2$thin films was from 0.84 to 1.3. The film was p-type when tile Cu/In ratio was above 0.99 and was n-type when the Cu/In was below 0.95. The fundamental absorption wavelength, absorption coefficient and optical band gap of p-type CuInS$_2$ thin film with Cu/In=1.3 were 837nm, 3.OH 104 cm-1 and 1.48 eV, respectively. The fundamental absorption wavelength absorption coefficient and optical energy band gap of n-type CuInS$_2$ thin film with Cu/In=0.84 were 821 nm, 6.0${\times}$10$^4$cm$\^$-1/ and 1.51 eV, respectively.

Thermal Shock Reliability of Low Ag Composition Sn-0.3Ag-0.7Cu and Near Eutectic Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Low Ag 조성의 Sn-0.3Ag-0.7Cu 및 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 열충격 신뢰성)

  • Hong, Won Sik;Oh, Chul Min
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.842-851
    • /
    • 2009
  • The long-term reliability of Sn-0.3wt%Ag-0.7wt%Cu solder joints was evaluated and compared with Sn-3.0wt%Ag-0.5wt%Cu under thermal shock conditions. Test vehicles were prepared to use Sn-0.3Ag-0.7Cu and Sn-3.0Ag-0.5Cu solder alloys. To compare the shear strength of the solder joints, 0603, 1005, 1608, 2012, 3216 and 4232 multi-layer ceramic chip capacitors were used. A reflow soldering process was utilized in the preparation of the test vehicles involving a FR-4 material-based printed circuit board (PCB). To compare the shear strength degradation following the thermal shock cycles, a thermal shock test was conducted up to 2,000 cycles at temperatures ranging from $-40^{\circ}C$ to $85^{\circ}C$, with a dwell time of 30 min at each temperature. The shear strength of the solder joints of the chip capacitors was measured at every 500 cycles in each case. The intermetallic compounds (IMCs) of the solder joint interfaces werealso analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the reliability of Sn-0.3Ag-0.7Cu solder joints was very close to that of Sn-3.0Ag-0.5Cu. Consequently, it was confirmed that Sn-0.3Ag-0.7Cu solder alloy with a low silver content can be replaced with Sn-3.0Ag-0.5Cu.

Flip Chip Process by Using the Cu-Sn-Cu Sandwich Joint Structure of the Cu Pillar Bumps (Cu pillar 범프의 Cu-Sn-Cu 샌드위치 접속구조를 이용한 플립칩 공정)

  • Choi, Jung-Yeol;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Compared to the flip-chip process using solder bumps, Cu pillar bump technology can accomplish much finer pitch without compromising stand-off height. Flip-chip process with Cu pillar bumps can also be utilized in radio-frequency packages where large gap between a chip and a substrate as well as fine pitch interconnection is required. In this study, Cu pillars with and without Sn caps were electrodeposited and flip-chip-bonded together to form the Cu-Sn-Cu sandwiched joints. Contact resistances and die shear forces of the Cu-Sn-Cu sandwiched joints were evaluated with variation of the height of the Sn cap electrodeposited on the Cu pillar bump. The Cu-Sn-Cu sandwiched joints, formed with Cu pillar bumps of $25-{\mu}m$ diameter and $20-{\mu}m$ height, exhibited the gap distance of $44{\mu}m$ between the chip and the substrate and the average contact resistance of $14\;m{\Omega}$/bump without depending on the Sn cap height between 10 to $25\;{\mu}m$.

  • PDF