• 제목/요약/키워드: $Ca^{2+}$-activated potassium channel $(K_{Ca}\

검색결과 36건 처리시간 0.034초

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

가토 신동맥 평활근에서 Barium의 수축작용 (Contractile Action of Barium in the Rabbit Renal Artery)

  • 전병화;김상섭;김세훈;장석종
    • The Korean Journal of Physiology
    • /
    • 제24권2호
    • /
    • pp.293-303
    • /
    • 1990
  • The contractile action of barium $(Ba^{2+})$ was investigated in the arterial strip of rabbit renal artery. The helical strip of isolated renal artery was immersed in the Tris-buffered Tyrode's solution equilibrated with 100% $O_2$ at $37^{\circ}C$ and its isometric tension was measured. $Ba^{2+}-induced$ contraction of arterial strip was dose-dependent and its maximal tension corresponded to $92.1{\pm}4.5%$ of tension by $K^+(100\;mM)$. $Ba^{2+}-induced$ contraction did not show the tachyphylactic phenomenon in the normal Tyrode's solution. $Ba^{2+}$ induced the tonic contraction in the $Ca^{2+}-free$ tyrode's solution and that was increased by the extracellula addition of $Ca^{2+}$. During the repeated exposure of the same dose of $Ba^{2+}\;(10\;mM)$ in the $Ca^{2+}-free$ Tyrode's solution, $Ba^{2+}-induced$ contraction was progressively decreased. Even though the intracellular NE-and caffeine-sensitive $Ca^{2+}$ was depleted, $Ba^{2+}$ induced the tonic contraction. After the pretreatment of lanthnum or verapamil, $Ba^{2+}$ did not induce contraction. $Ba^{2+}-induced$contraction was suppressed by extracellular $K^+$ in the normal Tyrode's solution and that was dependent on $K^+$ concentration. Suppressive effect of $K^+\;(14\;mM)$ on the $Ba^{2+}-induced$ contraction was also dependent on the intracellular $Ca^{2+}$ concentration. From the above resuts, it is suggested that $Ba^{2+}$ activate indirectly the contractile process by promoting the mobilization of intracellular $Ca^{2+}$ and the influx of extracellular $Ca^{2+}$. It is also suggested that action of $Ba^{2+}$ on the $Ca^{2+}-activated$ $K^+$ channel can result in the depolarization of cell membrane in the rabbit renal artery.

  • PDF

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF

돼지 소장 평활근 세포막에서의 Calcium 이동에 미치는 Calcium entry blockers 의 영향 (Effect of Calcium Entry Blockers on the Calcium Transport in the Isolated Sarcolemmal membrane from the Porcine Small Intestine)

  • 석정호;임종호;이재흔
    • 대한약리학회지
    • /
    • 제22권2호
    • /
    • pp.151-156
    • /
    • 1986
  • 최근 심근세포 또는 신경세포에서 발표된 여러 종류의 calcium channel중 calcium antagonist로 차단되는 channel 또는 차단되지 않는 channel 등이 있는지 알아보기 위해 실험을 시행하였다. 돼지 소장 평활근으로부터 고농도의 KCl(150mM)로 부하된 세포 포막낭을 만들어 고농도의$K^+$ 또는 전기자극으로 $^{45}Ca$의 이동을 유발시켜 다음과 같은 성적을 얻었다. 저농도의 $K^+$용액에서의 $^{45}Ca$이동보다 고농도의 $K^+$-용액에서의 $^{45}Ca$이동이 유의하게 증가되었으며(p<0. 05) 이때 유입되는 $^{45}Ca$의 양은 시간에 따라 서서히 감소되었다. 전기자극(3V, 15Hz, 25msec)을 하였을때 유입되는 $^{45}Ca$의 양은 전기자극을 하지 않은 대조군에 비하여 현저하게 증가되었고, 자극시간에 따른 $^{45}Ca$의 유입량은 2분 동안 계속 증가되었다. Diltiazem 또는 nifedipine을 처치하였을때, 고농도의 $K^+$-용액에 의한 $^{45}Ca$의 유입은 억제되지 않았으나 전기자극에 의해 유도되는 $^{45}Ca$의 유입은 유의하게 억제되었다(p<0.005). 상기의 실험성적으로 돼지 소장 평활근으로부터 분리한 세포막에서의 calcium이동 중 전기자극에 의해 이루어지는 것은 calcium antagonist로 차단되는 calcium channel을 통하여 이루어지는 것으로 사료된다.

  • PDF

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.191-198
    • /
    • 2009
  • The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.

Carbon monoxide releasing molecule-2 suppresses stretchactivated atrial natriuretic peptide secretion by activating largeconductance calcium-activated potassium channels

  • Li, Weijian;Lee, Sun Hwa;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권2호
    • /
    • pp.125-133
    • /
    • 2022
  • Carbon monoxide (CO) is a known gaseous bioactive substance found across a wide array of body systems. The administration of low concentrations of CO has been found to exert an anti-inflammatory, anti-apoptotic, anti-hypertensive, and vaso-dilatory effect. To date, however, it has remained unknown whether CO influences atrial natriuretic peptide (ANP) secretion. This study explores the effect of CO on ANP secretion and its associated signaling pathway using isolated beating rat atria. Atrial perfusate was collected for 10 min for use as a control, after which high atrial stretch was induced by increasing the height of the outflow catheter. Carbon monoxide releasing molecule-2 (CORM-2; 10, 50, 100 μM) and hemin (HO-1 inducer; 0.1, 1, 50 μM), but not CORM-3 (10, 50, 100 μM), decreased high stretch-induced ANP secretion. However, zinc porphyrin (HO-1 inhibitor) did not affect ANP secretion. The order of potency for the suppression of ANP secretion was found to be hemin > CORM-2 >> CORM-3. The suppression of ANP secretion by CORM-2 was attenuated by pretreatment with 5-hydroxydecanoic acid, paxilline, and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one, but not by diltiazem, wortmannin, LY-294002, or NG-nitro-L-arginine methyl ester. Hypoxic conditions attenuated the suppressive effect of CORM-2 on ANP secretion. In sum, these results suggest that CORM-2 suppresses ANP secretion via mitochondrial KATP channels and large conductance Ca2+-activated K+ channels.

토끼 위 근위부의 비-아드레날린 비-콜린성 이완반응의 포타슘 체널에 의한 접합전 조절작용 (Prejunctional Modulation of Non-adrenergic Non-cholinergic Relaxation of the Rabbit Proximal Stomach by Potassium Channels)

  • 홍은주;박미선;박상일;김명우;최수경;홍승철
    • 약학회지
    • /
    • 제41권4호
    • /
    • pp.399-406
    • /
    • 1997
  • The effects of different $K^+$ channel blockers were investigated on the non-adrenergic non-cholinergic (NANC) relaxations in the circular muscle of the rabbit proximal stomach. Non-selective blockers of $K^+$ channels, 4-aminopyridine (4-AP, 3~30${\mu}M$) and tetraethylammonium (TEA, 100~1000${\mu}M$) significantly enhanced the NANC relaxations in a concentration-dependent manner. The enhancement was more prominent for the NANC relaxations induced by the electric field stimulation (EFS) with lower frequencies. Blockers of large conductance $Ca^{2+}$-activated $K^+$ channels, charybdotoxin and iberiotoxin, a blocker of small conduntance $Ca^{2+}$-activated $K^+$ channels, apamin and a blocker of ATP-sensitive $K^+$ channels, glibenclamide had no effect on the NANC relaxations, respectively. Exogeneous administration of nitric oxide (NO, 1~30${\mu}M$) caused concentration-dependent relaxations which showed a similarity to those obtained with EFS. None of the $K^+$ channel blockers had an effect on the concentration-dependent relaxation in response to NO. These results suggest that prejunctional $K^+$ channels regulate the release of NO from the NANC nerve in the rabbit proximal stomach as the inhibition of prejunctional $K^+$ channels increases the NANC relaxation induced by the EFS.

  • PDF

Taurine relaxes human radial artery through potassium channel opening action

  • Ulusoy, Kemal Gokhan;Kaya, Erkan;Karabacak, Kubilay;Seyrek, Melik;Duvan, ibrahim;Yildirim, Vedat;Yildiz, Oguzhan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.617-623
    • /
    • 2017
  • The vascular actions and mechanisms of taurine were investigated in the isolated human radial artery (RA). RA rings were suspended in isolated organ baths and tension was recorded isometrically. First, a precontraction was achieved by adding potassium chloride (KCl, 45 mM) or serotonin (5-hydroxytryptamine, 5-HT, $30{\mu}M$) to organ baths. When the precontractions were stable, taurine (20, 40, 80 mM) was added cumulatively. Antagonistic effect of taurine on calcium chloride ($10{\mu}M$ to 10 mM) -induced contractions was investigated. Taurine-induced relaxations were also tested in the presence of the $K^+$ channel inhibitors tetraethylammonium (1 mM), glibenclamide ($10{\mu}M$) and 4-aminopyridine (1 mM). Taurine did not affect the basal tone but inhibited the contraction induced by 5-HT and KCl. Calcium chloride-induced contractions were significantly inhibited in the presence of taurine (20, 40, 80 mM) (p<0.05). The relaxation to taurine was inhibited by tetraethylammonium (p<0.05). However, glibenclamide and 4-aminopyridine did not affect taurine -induced relaxations. Present experiments show that taurine inhibits 5-HT and KCl -induced contractions in RA, and suggest that large conductance $Ca^{2+}$-activated $K^+$ channels may be involved in taurine -induced relaxation of RA.

흰쥐 적출 자궁의 수축 작용과 흰쥐 장관에 있어 칼륨에 의해 활성화되는 칼슘 채널에 대한 Cyclobuxine D의 영향 (Effects of Cyclobuxine D on Drug-Induced Contractions of the Isolated Rat Uterine Muscle and Potassium-Activated Calcium Channels in an Intestinal Smooth Muscle)

  • 권준택;이종화;박영현;조병현;최규홍;김유재;김종배;김정목;김천숙;차영덕;김영석
    • 대한약리학회지
    • /
    • 제24권1호
    • /
    • pp.103-109
    • /
    • 1988
  • Buxus microphylla var. koreana Nakai에 존재 하는 steroidal alkaloid인 cyclobuxine D는 흰쥐에 있어 심박동수 감소 작용, 적출 개구리 심장에서 수축력 감소작용, 토끼 적출 장관에서 acetylcholine과 $Ba^{++}$.에 유발되는 수축에 대한 억제작용 등을 나타낸다고 보고되었다. 본 연구에서는 흰쥐 적출 자궁에서 acetylcholine, oxytocin과 $Ba^{++}$에서 의해 나타나는 수축 작용에 대한 cyclobuxine D의 영향을 관찰하였으며, 또 흰쥐 적출장관에서 칼륨에 의해 활성화되는 칼슘채널에 대한 cyclobuxine D의 작용을 관찰하였다. Cyclobuxine D는 흰쥐 적출 자궁에서 acetylcholine, oxytocin과 $Ba^{++}$에 의해 증가되는 peak tension과 duration을 용량적으로 현저히 억제하였다. Cyclobuxine D는 oxytocin보다 acetylcholine에 의해 나타나는 수축작용에 대해 강하게 작용했다. 흰쥐 적출 장관(ileum)을 Ca을 고갈시킨 Tyrode's 용액에 $40{\sim}50$분 담그고 $Na^+$ 대신 $K^+$로 대체시킨 용액에 10분간 담근 후 1.8 mM $CaCl_2$를 가했을 때 이중적인 근육수축작용이 나타난다(Phasic and tonic increase in tension). Cyclobuxine D $(6.2{\times}10^{-5}\;M)$은 이 두 components를 유의하게 억제하였으며 tonic component가 최대치에 도달했을 때 cyclobuxine D $(3.1{\times}10^{-4}\;M)$을 가하면 근육은 긴장도를 빨리 상실했다. 이 결과는 적출 장관에 있어 칼륨에 의해 활성화되는 칼슘 채널이 cyclobuxine D에 의해 차단되고 있음을 나타낸다. 이상의 결과에서 cyclobuxine D의 흰쥐 적출 자궁에 대한 수축 억제 작용은 voltage-dependent calcium channel 차단에 밀접한 관련이 있는 것으로 사려된다.

  • PDF