DOI QR코드

DOI QR Code

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi (Department of Physiology, College of Medicine, Chung-Ang University) ;
  • Kim, Taeho (Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital) ;
  • Lim, Inja (Department of Physiology, College of Medicine, Chung-Ang University)
  • Received : 2020.11.17
  • Accepted : 2021.02.09
  • Published : 2021.05.01

Abstract

Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Keywords

References

  1. Marchewka J, Gawlik I, Debski G, Popiolek L, Marchewka W, Hydzik P. Cardiological aspects of carbon monoxide poisoning. Folia Med Cracov. 2017;57:75-85.
  2. Peers C, Steele DS. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol. 2012;52:359-365. https://doi.org/10.1016/j.yjmcc.2011.05.013
  3. Andre L, Gouzi F, Thireau J, Meyer G, Boissiere J, Delage M, Abdellaoui A, Feillet-Coudray C, Fouret G, Cristol JP, Lacampagne A, Obert P, Reboul C, Fauconnier J, Hayot M, Richard S, Cazorla O. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress. Basic Res Cardiol. 2011;106:1235-1246. https://doi.org/10.1007/s00395-011-0211-y
  4. Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ, Elies J, Duke A, Thireau J, Reboul C, Richard S, Bernus O, Steele DS, Peers C. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med. 2012;186:648-656. https://doi.org/10.1164/rccm.201204-0688OC
  5. Gandini C, Castoldi AF, Candura SM, Locatelli C, Butera R, Priori S, Manzo L. Carbon monoxide cardiotoxicity. J Toxicol Clin Toxicol. 2001;39:35-44. https://doi.org/10.1081/CLT-100102878
  6. Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol. 2017;312:C302-C313. https://doi.org/10.1152/ajpcell.00360.2016
  7. Otterbein LE, Foresti R, Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ Res. 2016;118:1940-1959. https://doi.org/10.1161/CIRCRESAHA.116.306588
  8. Lakkisto P, Siren JM, Kyto V, Forsten H, Laine M, Pulkki K, Tikkanen I. Heme oxygenase-1 induction protects the heart and modulates cellular and extracellular remodelling after myocardial infarction in rats. Exp Biol Med (Maywood). 2011;236:1437-1448. https://doi.org/10.1258/ebm.2011.011148
  9. Ewing JF, Raju VS, Maines MD. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3':5'-guanosine monophosphate. J Pharmacol Exp Ther. 1994;271:408-414.
  10. Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon monoxide and its controlled release: therapeutic application, detection, and development of carbon monoxide releasing molecules (CORMs). J Med Chem. 2018;61:2611-2635. https://doi.org/10.1021/acs.jmedchem.6b01153
  11. Akamatsu Y, Haga M, Tyagi S, Yamashita K, Graca-Souza AV, Ollinger R, Czismadia E, May GA, Ifedigbo E, Otterbein LE, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury. FASEB J. 2004;18:771-772. https://doi.org/10.1096/fj.03-0921fje
  12. Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res. 2009;105:1164-1176. https://doi.org/10.1161/CIRCRESAHA.109.209809
  13. Kohl P. Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts. Circ Res. 2003;93:381-383. https://doi.org/10.1161/01.RES.0000091364.90121.0C
  14. Villarreal FJ, Kim NN. Regulation of myocardial extracellular matrix components by mechanical and chemical growth factors. Cardiovasc Pathol. 1998;7:145-151. https://doi.org/10.1016/S1054-8807(97)00122-1
  15. Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol. 2016;94:22-31. https://doi.org/10.1016/j.yjmcc.2016.03.005
  16. Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res. 2004;94:828-835. https://doi.org/10.1161/01.RES.0000122382.19400.14
  17. Cartledge JE, Kane C, Dias P, Tesfom M, Clarke L, Mckee B, Al Ayoubi S, Chester A, Yacoub MH, Camelliti P, Terracciano CM. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovasc Res. 2015;105:260-270. https://doi.org/10.1093/cvr/cvu264
  18. Gaudesius G, Miragoli M, Thomas SP, Rohr S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res. 2003;93:421-428. https://doi.org/10.1161/01.RES.0000089258.40661.0C
  19. Vasquez C, Benamer N, Morley GE. The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J Cardiovasc Pharmacol. 2011;57:380-388. https://doi.org/10.1097/FJC.0b013e31820cda19
  20. Vasquez C, Mohandas P, Louie KL, Benamer N, Bapat AC, Morley GE. Enhanced fibroblast-myocyte interactions in response to cardiac injury. Circ Res. 2010;107:1011-1020. https://doi.org/10.1161/CIRCRESAHA.110.227421
  21. Bae H, Lee D, Kim YW, Choi J, Lee HJ, Kim SW, Kim T, Noh YH, Ko JH, Bang H, Lim I. Effects of hydrogen peroxide on voltage-dependent K+ currents in human cardiac fibroblasts through protein kinase pathways. Korean J Physiol Pharmacol. 2016;20:315-324. https://doi.org/10.4196/kjpp.2016.20.3.315
  22. Li GR, Sun HY, Chen JB, Zhou Y, Tse HF, Lau CP. Characterization of multiple ion channels in cultured human cardiac fibroblasts. PLoS One. 2009;4:e7307. https://doi.org/10.1371/journal.pone.0007307
  23. Wang YJ, Sung RJ, Lin MW, Wu SN. Contribution of BKCa-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol. 2006;213:175-185. https://doi.org/10.1007/s00232-007-0027-8
  24. Mahoney VM, Mezzano V, Morley GE. A review of the literature on cardiac electrical activity between fibroblasts and myocytes. Prog Biophys Mol Biol. 2016;120:128-133. https://doi.org/10.1016/j.pbiomolbio.2015.12.006
  25. Bae H, Lim I. Effects of nitric oxide on large-conductance Ca2+-activated K+ currents in human cardiac fibroblasts through PKA and PKG-related pathways. Clin Exp Pharmacol Physiol. 2017;44:1116-1124. https://doi.org/10.1111/1440-1681.12817
  26. Chilton L, Ohya S, Freed D, George E, Drobic V, Shibukawa Y, Maccannell KA, Imaizumi Y, Clark RB, Dixon IM, Giles WR. K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am J Physiol Heart Circ Physiol. 2005;288:H2931-H2939. https://doi.org/10.1152/ajpheart.01220.2004
  27. Hu XQ, Zhang L. Function and regulation of large conductance Ca2+-activated K+ channel in vascular smooth muscle cells. Drug Discov Today. 2012;17:974-987. https://doi.org/10.1016/j.drudis.2012.04.002
  28. Balderas E, Zhang J, Stefani E, Toro L. Mitochondrial BKCa channel. Front Physiol. 2015;6:104. https://doi.org/10.3389/fphys.2015.00104
  29. Kim HH, Choi S. Therapeutic aspects of carbon monoxide in cardiovascular disease. Int J Mol Sci. 2018;19:2381. https://doi.org/10.3390/ijms19082381
  30. Kapetanaki SM, Burton MJ, Basran J, Uragami C, Moody PCE, Mitcheson JS, Schmid R, Davies NW, Dorlet P, Vos MH, Storey NM, Raven E. A mechanism for CO regulation of ion channels. Nat Commun. 2018;9:907. https://doi.org/10.1038/s41467-018-03291-z
  31. Wilkinson WJ, Kemp PJ. Carbon monoxide: an emerging regulator of ion channels. J Physiol. 2011;589(Pt 13):3055-3062. https://doi.org/10.1113/jphysiol.2011.206706
  32. Peers C. Modulation of ion channels and transporters by carbon monoxide: causes for concern? Front Physiol. 2012;3:477. https://doi.org/10.3389/fphys.2012.00477
  33. Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, Elies J, Johnson E, Gamper N, Steele DS. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol. 2015;172:1546-1556. https://doi.org/10.1111/bph.12760
  34. Dong DL, Zhang Y, Lin DH, Chen J, Patschan S, Goligorsky MS, Nasjletti A, Yang BF, Wang WH. Carbon monoxide stimulates the Ca2+-activated big conductance k channels in cultured human endothelial cells. Hypertension. 2007;50:643-651. https://doi.org/10.1161/hypertensionaha.107.096057
  35. Wang R, Wu L, Wang Z. The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Pflugers Arch. 1997;434:285-291. https://doi.org/10.1007/s004240050398
  36. Lim I, Gibbons SJ, Lyford GL, Miller SM, Strege PR, Sarr MG, Chatterjee S, Szurszewski JH, Shah VH, Farrugia G. Carbon monoxide activates human intestinal smooth muscle L-type Ca2+ channels through a nitric oxide-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2005;288:G7-G14. https://doi.org/10.1152/ajpgi.00205.2004
  37. Hartsfield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal. 2002;4:301-307. https://doi.org/10.1089/152308602753666352
  38. Rotko D, Bednarczyk P, Koprowski P, Kunz WS, Szewczyk A, Kulawiak B. Heme is required for carbon monoxide activation of mitochondrial BKCa channel. Eur J Pharmacol. 2020;881:173191. https://doi.org/10.1016/j.ejphar.2020.173191
  39. Zhou Y, Lingle CJ. Paxilline inhibits BK channels by an almost exclusively closed-channel block mechanism. J Gen Physiol. 2014;144:415-440. https://doi.org/10.1085/jgp.201411259
  40. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298:1029-1033. https://doi.org/10.1126/science.1074360
  41. Singh H, Lu R, Bopassa JC, Meredith AL, Stefani E, Toro L. MitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A. 2013;110:10836-10841. https://doi.org/10.1073/pnas.1302028110
  42. Dong DL, Bai YL, Cai BZ. Calcium-activated potassium channels: potential target for cardiovascular diseases. Adv Protein Chem Struct Biol. 2016;104:233-261. https://doi.org/10.1016/bs.apcsb.2015.11.007
  43. Decaluwe K, Pauwels B, Verpoest S, Van de Voorde J. Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation. Eur J Pharmacol. 2012;674:370-377. https://doi.org/10.1016/j.ejphar.2011.11.004
  44. Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation. 2019;26:e12577.
  45. Motterlini R. Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochem Soc Trans. 2007;35(Pt 5):1142-1146. https://doi.org/10.1042/BST0351142
  46. Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol. 2019;862:172636. https://doi.org/10.1016/j.ejphar.2019.172636
  47. Wilkinson WJ, Kemp PJ. The carbon monoxide donor, CORM-2, is an antagonist of ATP-gated, human P2X4 receptors. Purinergic Signal. 2011;7:57-64. https://doi.org/10.1007/s11302-010-9213-8
  48. Musameh MD, Fuller BJ, Mann BE, Green CJ, Motterlini R. Positive inotropic effects of carbon monoxide-releasing molecules (CO-RMs) in the isolated perfused rat heart. Br J Pharmacol. 2006;149:1104-1112. https://doi.org/10.1038/sj.bjp.0706939
  49. Al-Owais MM, Hettiarachchi NT, Boyle JP, Scragg JL, Elies J, Dallas ML, Lippiat JD, Steele DS, Peers C. Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K+ channel Kv1.5. Cell Death Dis. 2017;8:e3163. https://doi.org/10.1038/cddis.2017.568
  50. Polte T, Abate A, Dennery PA, Schroder H. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler Thromb Vasc Biol. 2000;20:1209-1215. https://doi.org/10.1161/01.ATV.20.5.1209
  51. Durante W, Kroll MH, Christodoulides N, Peyton KJ, Schafer AI. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res. 1997;80:557-564. https://doi.org/10.1161/01.RES.80.4.557
  52. Ingi T, Cheng J, Ronnett GV. Carbon monoxide: an endogenous modulator of the nitric oxide-cyclic GMP signaling system. Neuron. 1996;16:835-842. https://doi.org/10.1016/S0896-6273(00)80103-8
  53. Cao L, Blute TA, Eldred WD. Localization of heme oxygenase-2 and modulation of cGMP levels by carbon monoxide and/or nitric oxide in the retina. Vis Neurosci. 2000;17:319-329. https://doi.org/10.1017/S0952523800173018
  54. Gustafsson AB, Brunton LL. Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2. Am J Physiol Cell Physiol. 2002;283:C463-471. https://doi.org/10.1152/ajpcell.00299.2001
  55. Nunez L, Vaquero M, Gomez R, Caballero R, Mateos-Caceres P, Macaya C, Iriepa I, Galvez E, Lopez-Farre A, Tamargo J, Delpon E. Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism. Cardiovasc Res. 2006;72:80-89. https://doi.org/10.1016/j.cardiores.2006.06.021
  56. White RE, Kryman JP, El-Mowafy AM, Han G, Carrier GO. cAMP-dependent vasodilators cross-activate the cGMP-dependent protein kinase to stimulate BKCa channel activity in coronary artery smooth muscle cells. Circ Res. 2000;86:897-905. https://doi.org/10.1161/01.RES.86.8.897
  57. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM. S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol. 2009;54:188-195. https://doi.org/10.1097/FJC.0b013e3181b72c9f
  58. Lima B, Forrester MT, Hess DT, Stamler JS. S-nitrosylation in cardiovascular signaling. Circ Res. 2010;106:633-646. https://doi.org/10.1161/CIRCRESAHA.109.207381
  59. Martinez-Ruiz A, Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res. 2004;62:43-52. https://doi.org/10.1016/j.cardiores.2004.01.013
  60. Ahern GP, Hsu SF, Klyachko VA, Jackson MB. Induction of persistent sodium current by exogenous and endogenous nitric oxide. J Biol Chem. 2000;275:28810-28815. https://doi.org/10.1074/jbc.M003090200
  61. Yue ZJ, Xu PT, Jiao B, Chang H, Song Z, Xie MJ, Yu ZB. Nitric oxide protects L-type calcium channel of cardiomyocyte during longterm isoproterenol stimulation in tail-suspended rats. Biomed Res Int. 2015;2015:780814. https://doi.org/10.1155/2015/780814
  62. Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E. Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res. 2006;98:403-411. https://doi.org/10.1161/01.RES.0000202707.79018.0a
  63. Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T. Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res. 2005;96:64-72. https://doi.org/10.1161/01.RES.0000151846.19788.E0
  64. Bai CX, Takahashi K, Masumiya H, Sawanobori T, Furukawa T. Nitric oxide-dependent modulation of the delayed rectifier K+ current and the L-type Ca2+ current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pig cardiomyocytes. Br J Pharmacol. 2004;142:567-575. https://doi.org/10.1038/sj.bjp.0705814
  65. Gomez R, Nunez L, Vaquero M, Amoros I, Barana A, de Prada T, Macaya C, Maroto L, Rodriguez E, Caballero R, Lopez-Farre A, Tamargo J, Delpon E. Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1). Cardiovasc Res. 2008;80:375-384. https://doi.org/10.1093/cvr/cvn205
  66. Lai MH, Wu Y, Gao Z, Anderson ME, Dalziel JE, Meredith AL. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am J Physiol Heart Circ Physiol. 2014;307:H1327-H1338. https://doi.org/10.1152/ajpheart.00354.2014
  67. Kohl P, Gourdie RG. Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? J Mol Cell Cardiol. 2014;70:37-46. https://doi.org/10.1016/j.yjmcc.2013.12.024