DOI QR코드

DOI QR Code

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu) ;
  • Sohn, Uy Dong (College of Pharmacy, Chung Ang University)
  • Received : 2008.10.20
  • Accepted : 2009.02.13
  • Published : 2009.02.28

Abstract

The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.

Keywords

Acknowledgement

Supported by : Chung-Ang University

References

  1. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592-5595
  2. Anderson, J.W., Johnstone, B.W., and Cook-Newell, M.E. (1995). Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 333, 276-282 https://doi.org/10.1056/NEJM199508033330502
  3. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249 https://doi.org/10.1074/jbc.271.34.20246
  4. Anthony, M.S. (2002). Phytoestrogens and cardiovascular disease: where's the meat? Arterioscler. Thromb. Vasc. Bio. 22, 1245-1247 https://doi.org/10.1161/01.ATV.0000027188.24963.EA
  5. Bigay, J., Deterre, P., Pfister, C., and Chabre, M. (1985). Fluoro-aluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 191, 181-185 https://doi.org/10.1016/0014-5793(85)80004-1
  6. Blackmore, P.F., and Exton, J.H. (1986). Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261, 11056-11063
  7. Cachero, T.G., Morielli, A.D., and Peralta, E.G. (1998). The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cell 93, 1077-1085 https://doi.org/10.1016/S0092-8674(00)81212-X
  8. Chabre, M. (1990). Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem. Sci. 15, 6-10 https://doi.org/10.1016/0968-0004(90)90117-T
  9. Cockcroft, S., and Taylor, J.A. (1987). Fluoroaluminates mimic guanosine 5'-[gamma-thio]triphosphate in activating the poly-phosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem. J. 241, 409-414 https://doi.org/10.1042/bj2410409
  10. Davis, M.J., Wu, X., Nurkiewicz, T.R., Kawasaki, J., Gui, P., Hill, M.A., and Wilson, E. (2001). Regulation of ion channels by protein tyrosine phosphorylation. Am. J. Physiol. 281, H1835-H1862
  11. Delclos, K.B., Bucci, T.J., Lomax, L.G., Latendresse, J.R., Warbritton, A., Weis, C.C., and Newbold, R.R. (2001). Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reprod Toxicol 15, 647-663 https://doi.org/10.1016/S0890-6238(01)00177-0
  12. Deng, J.T., Van Lierop, J.E., Sutherland, C., and Walsh, M.P. (2001). $Ca^{2+}$-independent smooth muscle contraction: a novel function for integrin-linked kinase. J. Biol. Chem. 276, 16365-16373 https://doi.org/10.1074/jbc.M011634200
  13. Edwards, G., and Weston, A. (1995). Pharmacology of the potassium channel openers. Cardiovasc. Drugs Ther. 9, 185-193 https://doi.org/10.1007/BF00878465
  14. Finn, H.M., and Ridley, A.J. (1996). Rho stimulates tyrosine phosphorylation of focal adhesion kinase p130 and paxillin. J. Cell. Sci. 109, 1133-1141
  15. Gilman, A.G. (1984). Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1-4 https://doi.org/10.1172/JCI111179
  16. Hsieh, C.Y., Santell, R.C., Haslam, S.Z., and Helferich, W.G. (1998). Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 58, 3833-3838
  17. Hodgson, J.M., Croft, K.D., Puddey, L.B., Mori, T.A., and Beilin, L.J. (1996). Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J. Nutr. Biochem. 7, 664-669 https://doi.org/10.1016/S0955-2863(96)00133-7
  18. Jeon, S.B., Jin, F., Kim, J.I., Kim, S.H., Suk, K., Chae, S.C., Jun, J.E., Park, W.H., and Kim, I.K. (2006). A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33 https://doi.org/10.1016/j.bbrc.2006.02.120
  19. Jones, S.V. (2003) Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Mol. Pharmacol. 64, 987-993 https://doi.org/10.1124/mol.64.4.987
  20. Kanaho, Y., Moss, J., and Vaughan, M. (1985) Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J. Biol. Chem. 260, 11493-11497
  21. Kitazawa, T., Masuo, M., and Somlyo, A.P. (1991). Proteinmediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 88, 9307-9310 https://doi.org/10.1073/pnas.88.20.9307
  22. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., Van der Saag, P.T., Van der Burg, B., and Gustafsson, J.A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252-4263 https://doi.org/10.1210/en.139.10.4252
  23. Kyselova, V., Peknicova, J., Boubelik, M., and Buckiova, D. (2004). Body and organ weight, sperm acrosomal status and reproduction after genistein and diethylstilbestrol treatment of CD1 mice in a multigenerational study. Theriogenology 61, 1307-1325 https://doi.org/10.1016/j.theriogenology.2003.07.017
  24. Liu, C.Y., and Sturek, M. (1996). Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells. Am. J. Physiol. 270, C1825-C1833 https://doi.org/10.1152/ajpcell.1996.270.6.C1825
  25. Low, A.M. (1996). Role of tyrosine kinase on $Ca^{2+}$ entry and refilling of agonist-sensitive $Ca^{2+}$ stores in vascular smooth muscles. Can. J. Physiol. Pharmacol. 74, 298-304 https://doi.org/10.1139/cjpp-74-3-298
  26. Luykenaar, K.D., Brett, S.E., Wu, B.N., Wiehler, W.B., and Welsh, D.G. (2004). Pyrimidine nucleotides suppress KDR currents and depolarize rat cerebral arteries by activating Rho kinase. Am. J. Phyiol. Heart Circ. Physiol. 286, H1088-H1100 https://doi.org/10.1152/ajpheart.00903.2003
  27. Martin, P.M., Horwitz, K.B., Ryan, D.S., and McGuire, W.L. (1978). Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103, 1860-1867 https://doi.org/10.1210/endo-103-5-1860
  28. Mitchell, J.H., and Collins, A.R. (1999). Effects of a soymilk supplement on plasma cholesterol levels and oxidative DNA damage in men-a pilot study. Eur. J. Nutr. 38, 143-148 https://doi.org/10.1007/s003940050055
  29. Muranyi, A., MacDonald, J.A., Deng, J.T., Wilson, D.P., Haystead, T.A., Wlash, M.P., Erdodi, F., Kiss, E., Wu, Y., and Hartshorne, D.J. (2002). Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem. J. 366, 211-216 https://doi.org/10.1042/bj20020401
  30. Murphy, R.A. (1982). Myosin phosphorylation and crossbridge regulation in arterial smooth muscle. Hypertension 4, 3-7
  31. Nakao, F., Kobayashi, S., Mogami, K., Mizukami, Y., Shirao, S., Miwa, S., Todoroki-Ikebe, N., Ito, M., and Matsuzaki, M. (2002). Involvement of Src family protein tyrosine kinases in $Ca^{2+}$+ sensitization of coronary artery contraction mediated by a sphingosylphosphorylcholine-Rho-kinase pathway. Circ. Res. 91, 953-960 https://doi.org/10.1161/01.RES.0000042702.04920.BF
  32. Nelson, M.T., and Quayle, J.M. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268, 799-822 https://doi.org/10.1152/ajpcell.1995.268.4.C799
  33. Nobe, K., and Paul, R.J. (2001). Distinct pathways of $Ca^{2+}$ sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular $Ca^{2+}$. Circ. Res. 88, 1283-1290 https://doi.org/10.1161/hh1201.092035
  34. Nobes, C.D., Hawkins, P., Stephens, L., and Hall, A. (1995). Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108, 225-233
  35. Noda, M., Yasuda-Fukazawa, C., Moriishi, K., Kato, T., Okuda, T., Kurokawa, K., and Takuwa, Y. (1995). Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett. 367, 246-250 https://doi.org/10.1016/0014-5793(95)00573-R
  36. Pfitzer, G. (2001). Invited reviews: regulation of myosin light chain phosphorylation in smooth muscle. J. Appl. Physiol. 91, 497-503 https://doi.org/10.1152/jappl.2001.91.1.497
  37. Rathel, T.R., Leikert, J.F., Vollmar, A.M., and Dirsch, V.M. (2005). The soy isoflavone genistein induces a late but sustained activation of the endothelial nitric oxide-synthase system in vitro. Brit. J. Pharmacol. 144, 394-399 https://doi.org/10.1038/sj.bjp.0706075
  38. Sacks, F.M., Lichtenstein, A., Van Horn, L., Harris, W., Kris-Etherton, P., and Winston, M. (2006). Soy protein, isoflavones, and cardiovascular health: an American heart association science advisory for professionals from the nutrition committee. Circulation 113, 1034-1044 https://doi.org/10.1161/CIRCULATIONAHA.106.171052
  39. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y., and Takuwa, Y. (2003). $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556 https://doi.org/10.1161/01.RES.0000090998.08629.60
  40. Shenolikar, S., and Nairn, A.C. (1991). Protein phosphatases: recent progress. Adv. Second Messenger Phosphoprotein Res. 23, 1-121
  41. Shimizu, M., and Weinstein, I.B. (2005). Modulation of signal transduction by tea cathechins and related phytochemicals. Mutat. Res. 591, 147-160 https://doi.org/10.1016/j.mrfmmm.2005.04.010
  42. Somlyo, A.P., and Somlyo, A.V. (1994). Signal transduction and regulation in smooth muscle. Nature 372, 231-236 https://doi.org/10.1038/372231a0
  43. Somlyo, A.P., and Somlyo, A.V. (1998). From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta. Physiol. Scand. 164, 437-448 https://doi.org/10.1046/j.1365-201X.1998.00454.x
  44. Somlyo, A.P., and Somlyo, A.V. (2000). Signal transduction by Gproteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177-185 https://doi.org/10.1111/j.1469-7793.2000.t01-2-00177.x
  45. Storey, N.M., O'Bryan, J.P., and Armstrong, D.L. (2002). Rac and Rho mediate opposing hormonal regulation of the ether-a-gogo-related potassium channels. Curr. Biol. 12, 27-33 https://doi.org/10.1016/S0960-9822(01)00625-X
  46. Squadrito, F., Altavilla, D., Morabito, N., Crisafulli, A., D'Anna, R., Corrado, F., Ruggeri, P., Campo, G. M., Calapai, G., Caputi, A.P., and Squadrito, G. (2002). The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis 163, 339-347 https://doi.org/10.1016/S0021-9150(02)00013-8
  47. Tasaki, K., Hori, M., Ozaki, H., Karaki, H., and Wakabayashi, I. (2003). Difference in signal transduction mechanisms involved in 5-hydroxytryptamine- and U46619-induced vasoconstrictions. J. Smooth. Muscle Res. 39, 107-117 https://doi.org/10.1540/jsmr.39.107
  48. Tsai, M.H., and Jiang, M.J. (2006). Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232 https://doi.org/10.1007/s00424-006-0133-y
  49. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M., and et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994 https://doi.org/10.1038/40187
  50. Wang, J., Eltoum, I.E., and Lamartiniere, C.A. (2004). Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Mol. Cell. Endocrinol. 219, 171-180 https://doi.org/10.1016/j.mce.2003.12.018
  51. Watts, S.W., Yeum, C.H., Campbell, G., and Webb, R.C. (1996). Serotonin stimulates protein tyrosyl phosphorylation and vascular contraction via tyrosine kinase. J. Vasc. Res. 33, 288-298 https://doi.org/10.1159/000159156
  52. Wier, W.G., and Morgan, K.G. (2003). $\alpha$1-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91-139
  53. Wilson, D.P., Susnjar, M., Kiss, E., Sutherland, C., and Walsh, M.P. (2005). Thromboxane $A_2$-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774 https://doi.org/10.1042/BJ20050237
  54. Wisniewski, A.B., Klein, S.L., Lakshmanan, Y., and Gearhart, J.P. (2003). Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urol. 169, 1582–1586 https://doi.org/10.1097/01.ju.0000046780.23389.e0
  55. Wooldridge, A.A., MacDonald, J.A., Erdodi, F., Ma, C., Borman, M.A., Hartshorne, D.J., and Haystead, T.A. (2004). Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504 https://doi.org/10.1074/jbc.M405957200
  56. Zeng, Y.Y., Benishin, C.G., and Pang, P.K. (1989). Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. I. Studies with fluoride. J. Pharmacol. Exp. Ther. 250, 343-351

Cited by

  1. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation vol.49, pp.None, 2009, https://doi.org/10.1540/jsmr.49.26
  2. Effect of soy protein and isoflavones on blood pressure and endothelial cytokines: a 6-month randomized controlled trial among postmenopausal women vol.31, pp.2, 2009, https://doi.org/10.1097/hjh.0b013e32835c0905
  3. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitri vol.7, pp.None, 2016, https://doi.org/10.3389/fphys.2016.00529
  4. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility vol.24, pp.1, 2016, https://doi.org/10.4062/biomolther.2015.104
  5. Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition vol.26, pp.2, 2009, https://doi.org/10.4062/biomolther.2016.233
  6. Endothelium Independent Effect of Pelargonidin on Vasoconstriction in Rat Aorta vol.26, pp.4, 2009, https://doi.org/10.4062/biomolther.2017.197