• Title/Summary/Keyword: $CO_2$ Emission Assessment

Search Result 208, Processing Time 0.199 seconds

The Analysis of CO2 Emission Assessment in Concrete with Smart Blast Furnace Slag (스마트 고로슬래그미분말 혼입 콘크리트의 CO2 배출량 평가에 관한 연구)

  • Kim, Tae-Hyoung;Tae, Sung-Ho;Ha, Sung-Kyun;Park, Jung-Hoon;Roh, Seung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.43-45
    • /
    • 2012
  • As a part of recent CO2 emission reduction studies in the concrete industry with active use of concrete admixtures with low basic unit of CO2 emission such as blast furnace slag (BFS), basic unit of CO2 emission by SBFS was computed in order to assess CO2 emission by reinforced concrete building with smart blast furnace slag (SBFS). In addition, SBFS concrete was applied to the subject building for assessment of CO2 emission during material production step among construction steps. Life cycle CO2 emission assessment on the subject building was classified into 7cases according to mix ratio of BFS and SBFS.

  • PDF

Methodology of CO2 Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes (에틸렌 생산에서의 CO2 국가배출계수 검증 및 정량평가 방법론)

  • Youk, Soo Kyung;Jeon, Eui-Chan;Yoo, Kyung Seun
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • The purpose of this study is to suggest the methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment in Ethylene Product Processes. At first, this study compare the IPCC (Intergovernmental Panel on Climate Change) 1996 Guideline and 2006 Guideline. And analyse methodology for estimating $CO_2$ emission and $CO_2$ emission factor in Ethylene product process. Also analyse cases of estimating $CO_2$ emission factor based on material balance. Methodology of $CO_2$ Emission Factor Verification and Quantitative Assessment are following the categories proposed by GIR (Greenhouse Gas Inventory and Research Center). There are total 12 factors in 8 categories and give 5 or 10 points according to their importance. Also this study suggests necessary data of document to meet the conditions. The result would help estimate accuracy Greenhouse Gas Inventory. Also contribute to establish policy on environmental assessment, air conservation, etc.

The Development of BIM Library for Building Life Cycle CO2 Assessment (건축물 전과정 $CO_2$ 평가를 위한 BIM 라이브러리 개발)

  • Lee, Byeong-Ho;Hong, Soung-Wook;Shin, Sung-Woo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • BIM and its quantity take-off widely apply to the construction projects and LCCO2 Assessment using the BIM's quantity take-off function can be tried recently. Because BIM modeling programs such as Revit and ArchiCAD do not provide adequate library for LCCO2 Assessment, quantity take-off data should be conversed and applied to Carbon Emission Coefficient using Excel program or manual work. Therefore, the purpose of this research is 1) to propose the Unit Conversion Systems for Carbon Emission Coefficient, 2) to provide basic library sets for BIM based LCCO2 Assessment method, and 3) to apply 11 material library sets on a apartment unit plan modeling to pursue the CO2 emission evaluation of the material production in the process of LCCO2 Assessment. Research results showed CO2 emission amount of 458.64kgCO2/m2 from the apartment unit plan modeling.

Comparative Evaluation of Interpolation Accuracy for $CO_2$ Emission using GIS (GIS를 활용한 이산화탄소 농도 보간 정확도 비교평가)

  • Kim, Jun-Hyun;Choi, Jin-Ho;Kim, Chung-Sil
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.647-656
    • /
    • 2010
  • As the $CO_2$ from buildings take up approximately 25% of the total $CO_2$ emission, the need for regulating and managing this emission is urgently required. Thus this study recognizes $CO_2$ emission status for diverse purposes and suggests accurate interpolation method for visualizing $CO_2$ emission as the basic data for regulating and managing $CO_2$ emission by applying IDW, Spline, and Kringing method. Results showed that Gaussian Function application among the Kriging methods had the highest accuracy in its estimations, with 3.049 with RMSE standards. This could be used as the basic data when visualizing $CO_2$ emission status, which is a necessity for many local and federal governments that are to regulate and manage $CO_2$ emission. This study shows that the interpolation is very appropriative method in recognizing $CO_2$ emission characteristics for regional climate change measures.

Assessment of the CO2 Emission Considering the Generator Maintenance Scheduling (발전기보수유지계획을 고려한 CO2배출량의 추정)

  • Jeon, Dong-Hoon;Park, Jeong-Je;Oh, Tae-Gon;Cho, Kyeong-Hee;Choi, Jae-Seok;Baek, Ung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1507-1513
    • /
    • 2010
  • The $CO_2$ emission can be decreased due to freedom of generator maintenance scheduling(GMS). This paper proposes assessment of $CO_2$ emission considering generator maintenance scheduling(GMS) and evaluates effect of the GMS on $CO_2$ emission. And also, this paper assesses the $CO_2$ emission and the probabilistic production cost simulation of nuclear and thermal power generators considering operation of hydro and pumped generator. The minimum reliability criterion level satisfied production cost minimization function model is used in this paper. The practicality and effectiveness of the proposed approach are demonstrated by simulation studies for a real size power system in Korea in 2010.

Predicting the CO2 Emission of Concrete Using Statistical Analysis

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jang, Min-Ho;Park, Hyo-Seon
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Accurate assessment of $CO_2$ emission from buildings requires gathering $CO_2$ emission data of various construction materials. Unfortunately, the amount of available data is limited in most countries. This study was conducted to present the $CO_2$ emission data of concrete, which is the most important construction material in Korea, by conducting a statistical analysis of the concrete mix proportion. Finally, regression models that can be used to estimate the $CO_2$ emission of concrete in all strengths were developed, and the validity of these models was evaluated using 24 and 35MPa concrete data. The validation test showed that the error ratio of the estimated value did not exceed a maximum of 5.33%. This signifies that the models can be used in acquiring the $CO_2$ emission data of concrete in all strengths. The proposed equations can be used in assessing the environmental impact of various construction structural designs by presenting the $CO_2$ emission data of all concrete types.

A Study on The Evaluation Criteria of Carbon Emission and the Development of the Evaluation Method in Apartment House (공동주택을 대상으로 한 탄소배출 평가기준 구축 및 평가방법 개발)

  • Choi, Doo-Sung;Chun, Hung-Chan
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.79-88
    • /
    • 2013
  • This study creates the evaluation criteria to analyze the $CO_2$ emission quantity in the complex of apartment house among domestic buildings and proposes how to calculate the $CO_2$ emission quantity by the only simple information of apartment house. The study shows that in order to create the index of carbon emission evaluation criteria, $CO_2$ emission quantity for its input materials in these 27 apartment houses are 445,412g-$CO_2/m^2$ for apartment building, 474,322g-$CO_2/m^2$ for the basement parking lot, 483,523g-$CO_2/m^2$ for welfare facility, 729,957g-$CO_2/m^2$ for sales facility, 743,560g-$CO_2/m^2$ for other facility, 26,782g-$CO_2/m^2$ for public facility, 43,659g-$CO_2/m^2$ for landscape, 1,113g-$CO_2/m^2$ for indoor facility, 11,251g-$CO_2/m^2$ for outdoor facility and 891g-$CO_2/m^2$ for common temporary based on the average $CO_2$ emission by facility. We can also see the analysis data that in case of using the selected factors only, the rate of error is 7.51% comparing with the emission quantity by using simplified LCA method this study suggests for the whole range of apartment houses and the rate of error is average 3.24% using selective and main materials. And this it is evaluated that we can get the result which is similar to the actual $CO_2$ emission quantity with only the simple information about the apartment house.

A Study on the Reduction Measures of CO2 Emission in the Commercial Sector of Korea (상업부분에 있어서 이산화탄소 저감방안에 관한 연구)

  • Lee, Dong Kun;Jung, Tae Yong;Youn, So Won
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.59-72
    • /
    • 1999
  • The purpose of the study is to propose the concrete and realistic alternative measures for $CO_2$ emission reduction on commercial sector. To achieve the purpose, this study adopted AIM/KOREA simulation model modified from AIM(Asia-Pacific Integrated Model) originally developed by Japan National Environmental Research Institute. The results of simulation demonstrate that the $CO_2$ emission from the commercial sector in 1995 was estimated 864 million TC(tons of carbon); however, according to the base scenario, $CO_2$ emission in 2020 is expected to be increased to 1,872 million TC, which is 2.17 times greater than that in 1995. In order to mitigate the ever-increasing $CO_2$ emission, the results of AIM/KOREA simulations under various scenarios showed that the 30-thousand-won carbon tax scenario does not successfully motivate the selection of advanced technology; however, with the 300-thousand-won carbon tax, a substantial amount of $CO_2$ emission reduction by 1.69 million TC from the BaU((Business-as-Usual)scenario is expected to be achieved by year 2020. Such substantial reduction of $CO_2$ emission under the 300-thoudsand-won carbon tax scenario is due to the introduction of advanced technology, such as use of condensing boilers, forced by heavier carbon tax. Under the scenario that presumes the maximum introduction of gas-burning industrial appliances, an 2.66 million TC of $CO_2$ reduction was expected. The results of this study suggest that the $CO_2$ emission reduction measures can be interpreted in many different views. However, if people and industries are fully aware of the economic benefit of energy saving, a certain level of $CO_2$ reduction by a successful introduction of advanced energy saving technology appears to be achieved without carbon tax or subsidies.

  • PDF

Estimation of Emission and Development of Emission Factor on Greenhouse Gas (CO2) of the Combustion Facilities (연소시설의 온실가스(CO2) 배출량 산정 및 배출계수개발)

  • Kim, Hong-Rok;Jin, Byong-Bok;Yoon, Wan-Woo;Kwon, Young-Sung;Lee, Min-Young;Yoon, Young-Bong;Shin, Won-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Since the Kyoto Protocol became into effect, Korea has been expected to be part of the Annex I countries performing the duty of GHG reduction in the phase of post-Kyoto. Therefore, it is necessary to develop emission factors appropriate to Korean circumstances. In order to develop emission factors this study utilized the CleanSYS, which is the real-time monitoring system for industrial smoke stacks to calculate the emission rate of $CO_2$ continuously. In this study, the main focus was on the power generation plants emitting the largest amount of $CO_2$ among the sectors of fossil fuel combustion. Also, an examination on the comparison of $CO_2$ emission was made among 3 generation plants using the different types of fuels such as bituminous coal and LNG; one for coal and others for LNG. The $CO_2$ concentration of the coal fired plant showed Ave. 13.85 %(10,384 ton/day). The LNG fired plants showed 3.16 %(1,031 ton/day) and 3.19 %(1,209 ton/day), respectably. Consequently, by calculating the emission factors using the above results, it was found that the bituminous coal fired power plant had the $CO_2$ emission factor average of 88,726 kg/TJ, and the LNG fired power plants had the $CO_2$ average emission factors of 56,971 kg/TJ and 55,012 kg/TJ respectably which were similar to the IPCC emission factor.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF