• Title/Summary/Keyword: $CO_2$ 양생

Search Result 92, Processing Time 0.133 seconds

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

The experimental study on the compressive strength for cementitious material using CO2 curing (CO2 양생을 이용한 시멘트계 재료의 압축강도 발현에 관한 실험적 연구)

  • Sung, Myung-Jin;Ryu, Hwa-Sung;Shin, Sang-Heon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.264-265
    • /
    • 2014
  • Currently, CO2 existed in the air usually reacts concrete, and then CaCO3 can be appeared. As time goes by, pH of concrete is decreased and corrosion of steel can be happened. This phenomenon is called carbonation. For preventing carbonation of concrete, various methods like using corrosion inhibitor, high compressive strength concrete, and enough covering depth are adopted. But these method are usually passive methods focused on corrosion of steel and have limitation on economic. Thus, as basic study for active method of carbonation, cement pastes with CO2 reactive material (γ-C2S, MgO) and GBFS were in accelerated carbonation, and the compressive strengths were measured. On the result, the compressive strength was improved better than non-carbonation. Through measuring the weight change using TG-DTA, as specimens were carbonated, according to decreasing of Ca(OH)2 and Mg(OH)2, CaCO3 and MgCO3 were increased. Therefore it can be shown that carbonation curing can be realized.

  • PDF

Manufacture of CO2 Reactive Hardening Cement Using Waste Concrete Powder (폐콘크리트 미분말을 활용한 이산화탄소 반응경화 시멘트 제조)

  • Lee, hyang-Sun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.75-76
    • /
    • 2023
  • In the cement industry, various research initiatives are underway to achieve carbon neutrality. Mineral carbonation is a technology that converts carbon dioxide into minerals for storage, and CO2 reactive hardening cement is a type of cement that incorporates mineral carbonation technology. In this study, we aimed to manufacture CO2 reactive hardening cement for reducing carbon emissions in the cement industry by utilizing waste concrete powder generated in the construction sector.

  • PDF

Development of Geopolymer Mortar Based on Fly Ash (플라이애시 기반 지오폴리머 모르타르 개발)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution(7% of total of $CO_2$ emissions). Attempts to increase the utilization of fly ash, by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in oder to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

  • PDF

An experimental study on carbonation resistance of Mg(OH)2 mixed cement paste (Mg(OH)2 혼입 시멘트 페이스트의 탄산화 저항성에 관한 실험적 연구)

  • Chen, Zheng-Xin;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.165-166
    • /
    • 2017
  • Corrosion of reinforcement is the main factors affecting the durability of reinforced concrete in the world which lead to the failure of structures of reinforced concrete buildings. In this research, mixed brucite(Mg(OH)2) into ordinary portland cement paste in ratio of 5, 10 and 15% as a kind of CO2 fixation material. Samples were exposed to an accelerated carbonation enslavement of 20% CO2 concentration, 60% relative humidity, and a temperature of 20℃ until tested at 3d, 7d, 14d and 28d. After 28d CO2 accelerated curing, in the paste containing MH megnesian calcite was found by XRD and SEM-EDX. Meanwhile, paste containing Mg(OH)2 exhibit the better pore distribution than ordinary portland cement paste and relatively good compressive strength.

  • PDF

A Study on the Hardening Characteristics of Alumino-Silicate Inorganic Binder Using Red-Mud according to Curing Temperature (레드머드를 활용한 알루미노 규산염계 무기결합재의 양생온도별 경화특성에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Lee, Jun;Kim, Jae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.259-262
    • /
    • 2012
  • Recently, as the national policy of green growth is promoted, construction field also makes an effort to reduce CO2 gas released when producing cement continuously. In other words, as the method solving environmental pollution and resources exhaustion, lots of mineral material compounds such as blast furnace slag powder which is industrial by-product, fly ash, red mud, etc. are examined to bo used as the substitute good of cement Therefore this study is to investigate the hardening characteristics of alumino-silicate inorganic binder using red-mud used as a accelerator of industrial by-product such as fly ash and blast furnace slag powder according to curing temperature. As a result, it is effective to use red-mud as the accelerator of inorganic binder with other additory accelerators.

  • PDF

Strength Characteristic according to the Curing Method of the Ternary System Inorganic Binder (3성분계 무기결합재의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Yun-Seong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.33-34
    • /
    • 2013
  • Recently, as the policy of state that it is the low carbon green growth is promoted, the effort for reducing the CO2 gas generation ejected from the construction industry in the cement production is continued. That is, the method using the mineral admixtures including the silica fume and red mud, silica fume and etc. it is the industrial byproduct with the method solving the exhaustion problem of the environmental contamination settlement and natural resources, the great quantity as the cement substitute material is examined. Accordingly, in this research, the strength characteristic of the curing body differentiating the curing method of the ternary system inorganic binder using the blast furnace slag and red mud, silica fume and etc. as the cement substitute material tried to be examined.

  • PDF

Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement (칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토)

  • Wu, Xuanru;Kunal Krishna, Das;Jang, Jeong Gook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF

Improving the CO2 Sequestration Capability and Mechanical Properties of CO2 Reactive Cement Paste Using pH Swing Method (pH Swing법을 활용한 이산화탄소 반응경화형 시멘트 경화체의 CO2 고정화 성능 및 기계적 물성 개선)

  • Cho, Seong-Min;Kim, Gyeong-Ryul;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.115-116
    • /
    • 2023
  • This study aims to investigate and improve the carbon dioxide sequestration capability and the mechanical properties of non-hydraulic low calcium silicate cement especially designed for CO2 reaction and ordinary Portland cement subjected to the carbonation curing facilitating pH swing method. Nitric acid (HNO3) was utilized as an liquid for the mixing of cement paste to enhance the initial dissolution of Ca ions from the cements by promoting low pH environment and prevent the direct precipitation of Ca with the anion, owing to the high solubility of Ca(NO3)2 in water. The results presented that the higher the concentration of HNO3, the higher the compressive strength and CO2 sequestration (until 0.1 M). Ca dissolution caused by the harsh acid attack onto the anhydrous cement particle lead to the higher carbonation reaction degree, forming abundant CaCO3 crystals after the reaction. However, cement paste mixed with excessively high concentration of HNO3 presented deterioration due to the too harsh pH environment and abundant NO3- ions which are known to retard the reaction of cement.

  • PDF

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.