• Title/Summary/Keyword: $B_4C$(Boron Carbide)

Search Result 30, Processing Time 0.025 seconds

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process (DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성)

  • Yu-Jeong An;Ju-Yeon Han;Hyunjoo Choi;Se-Eun Shin
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

A Study for the Sintering of Boron Carbide ($B_4C$의 소결에 관한 연구)

  • 오정훈;오근호;이종근;김도경;이준근;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.1
    • /
    • pp.60-66
    • /
    • 1985
  • Hard shaped bodies are made by sintering a cold-pressed compact of a boron carbide compound which contains a densification aid. Titanium diboride and carbon were used as a densification aid in a range of 1% to 10% by weight. The effects of sintering temperature and additives on linear shrinkage porosity hardness bend strength and microstructure were examined. The initial partical size dependence on the sintered density was also discussed.

  • PDF

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Effect of Addition of Boron Carbide on the Graphitization and Oxidation Resistance of Raw Cokes (Raw Cokes의 흑연화 및 내산화성에 미치는 $B_4C$첨가 효과)

  • 염희남;김경자;김인기;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.413-419
    • /
    • 1997
  • The specimens which were prepared from cokes with additions of 0~25 wt% B4C were sintered in Ar atmosphere at 220$0^{\circ}C$. The effects of B4C content on graphitization and oxidation resistance of cokes were investigated. B4C accelerates the graphitization of cokes and at 220$0^{\circ}C$ the degree of graphitization increased from 0.33 which is the value of pure carbon to 0.56, which increased bluk density and porosity. Especially bending strength increased as th graphitization temperature increased. Oxidation resistance property was greatly improved when B4C was added more than 10wt% at 80$0^{\circ}C$ and when B4C was added more than 20wt% at 100$0^{\circ}C$. This was because that the thin layer of B2O3 glass phase on the surface of the composite could be identified to increase the oxidation resistance.

  • PDF

Personal Ceramic Armor Materials to Protect the Human lives in the Warfare (생명을 보호히는 개인용 세라믹 방탄보호재료)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.50-53
    • /
    • 2009
  • This paper mainly describes the armor materials, especially the ceramic materials for the personal protection. In the ceramic armor materials, B4C ceramics and SiC ceramics are the most popular materials. The $B_4C$ ceramics which consists of 4 atoms of boron and I atom of carbon is very light and strong. It is usually used to personal protection armor and chair protection in the helicopter. This material must be sintered at very high temperature because it melts at $2400^{\circ}C$. In order to have a good armor property, it must have very high density which is achieved by hot press or subsidiary sintering aid methods such as reducing the particle size of raw materials or mixing the sintering agents to the raw materials.

Application of rate-controlled sintering into the study of sintering behavior of boron carbide (탄화붕소 소결 거동 연구를 위한 율속제어소결의 적용)

  • Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • Under rate-controlled sintering, furnace power is controlled to maintain a specific specimen contraction rate. This thermal processing method guarantees continuous process with a minimum thermal energy applied over time and makes it possible to control the density of the sintered body precisely. In this study, the rate-controlled sintering is applied to the sintering of $B_4C$ in order to investigate how rate-controlled sintering variables can affect the sintering behavior and/or grain growth behavior of $B_4C$ and how the results can be interpreted using sintering theories to draw an optimal sintering condition of the rate-controlled sintering. Further, the applicability of the rate-controlled sintering into the study for sintering of unknown materials is also considered.

Hot Pressing and Spark Plasma Sintering of AlN-SiC-TiB2 Systems using Boron and Carbon Additives (보론과 카본 조제를 사용한 AlN-SiC-TiB2계의 고온가압 및 Spark Plasma Sintering)

  • Lee, Sea-Hoon;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.467-471
    • /
    • 2009
  • Effects of boron and carbon on the densification and thermal decomposition of an AlN-SiC-$TiB_2$ system were investigated. $SiO_2$ was mostly removed by the addition of carbon, while $Al_2O_3$ formed $Al_4O_4C$ and promoted the densification of the systems above $1850^{\circ}C$. Rather porous specimens were obtained without the additives after hot pressing at $2100^{\circ}C$, while densification was mostly completed at $2000^{\circ}C$ by using the additives. The sintering temperature decreased further to $1950^{\circ}C$ by applying spark plasma sintering. The additives promoted the shrinkage of AlN by forming a liquid phase which was originated from the carbo- and boro-thermal reduction of $Al_2O_3$ and AlN.

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill (고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조)

  • Uhm, Young-Rang;Kim, Jae-Woo;Jung, Jin-Woo;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2009
  • Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.

Effect of Added B4C on the Mechanical Properties of WC/Ni-Si Hardmetal (WC/Ni-Si 초경합금의 기계적 성질에 미치는 B4C의 영향)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of $B_4C$ on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bodies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and $B_4C$ (x wt.%), where $$0{\leq_-}x{\leq_-}1.2$$ wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure characterizations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro analysis. The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of $B_4C$ improved the sinterability of the hardmetals. With increasing $B_4C$ content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between $B_4C$ and the binder metal (Ni, Si).