Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD

플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과

  • 김현철 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Published : 2001.04.01

Abstract

B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

$SiH_4$, $CH_4$, $B_2H_6$ 혼합기체를 이용하여 플라즈마 화학증착법으로 비정질 탄화실리콘(a-SiC:H) 박막을 증착하였다. 기상 doping 농도를 0에서 $2.5\times10^{-2}$ 범위에서 변화시켜 얻은 박막의 물성을 SEM, XRD, Raman 분광법, FTIR, SIMS, 광흡수도와 전기전도도 분석을 통하여 살펴보았다. $B_2H_6$/($CH_4+SiH_4$) 기체유량비가 증가할수록 붕소의 도핑효율와 미세결정성은 감소하였다. 증착 중 $B_2H_6$ 기체가 첨가됨에 따라 비정질 탄화실리콘 박막의 Si-C-H 결합기의 강도는 감소하였으며, 이의 영향으로 박막내의 수소함량은 $B_2H_6/(SiH_4+CH_4$) 기체 유량비가 증가함에 따라 16.5%에서 7.5%로 단조감소하였다. $B_2H_6(CH_4+SiH_4$) 기체유량비가 증가할수록 a-SiC:H 박막의 광학적 밴드갭과 전기활성화 에너지는 감소하였고, 전기전도도는 증가하였다.

Keywords

References

  1. Philos. Mag. v.35 D. A. Anderson;W. E. Spear
  2. J. Non-Cryst. Solids v.97-98 D. Kruangam;T. Toyama;Y. Hattori;M. Deguchi;H. Okamoto;Y. Hamakaya
  3. J. Non-Cryst. Solids v.198/200 T. Fujii;M. Yoshimoto;T. Fuyuki;H. Matsunami
  4. Proc. 5th Int. Photovoltaic Sci. and Eng. Conf. v.1 H. Sannomiya;S. Moriuchi;Y. Inoue;K. Nomoto;A. Yokota;M. Itoh;Y. Nakata;T. Tsuji
  5. Microelectron. J. v.28 L. magafas;N. Georgoulas;A. Thanailakis
  6. Electron. Lett. v.28 no.17 E. I. Dinitriadis;N. Georgoulas;A. Thanailakis
  7. J. Non-Cryst. Solids v.238 L. Magafas
  8. Mat. Res. Soc. Symp. Proc. v.202 A. S. Kirtikar;J. Morgiel;R. Sinclair;I. W. Wu;A. Chiang
  9. J. Appl. Phys. v.25 T. Ichimura;T. Ihara
  10. Phys. Rev. v.B35 M. Stutzmann;D. K. Bigelsen;R. A. Street
  11. Int. J. Electronics v.85 S. F. Yoon
  12. Solid State Comm. v.48 Y. Inoue;S. Nakashima;A. Mitsuchi;S. Tabata;S. Tsuboi
  13. J. Non-Cryst. Solids v.35/36 C. J. Fang;K. J. Gruntz;L. Ley;M. Cradona;I. J. Demond;G. Muller;S. Kalbiter
  14. Phys. ReV. v.B28 I. Wagner;H. Stasiewski;B. Abeles;W. A. Lanford
  15. Amorphous and Crystalline Silicon Carbide v.77 S. Akita;K. Wakita;Y. Nakayama;T. Kayamura
  16. J. Appl. Phys. v.83 no.2 A. Hadjadj;P. Stahel;P. Rocai Cabarros
  17. Appl. Surf. Scie. v.113/114 T. Ichmura;K. Aizawa
  18. Thin Solid Films v.209 J. Tyczkowski;E. Odrobina;P. Kazimierski;R. Baessler;A. Kisiel;N. Zemu