DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process

DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성

  • Yu-Jeong An (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Ju-Yeon Han (Department of Materials Science and Engineering, Kookmin University) ;
  • Hyunjoo Choi (Department of Materials Science and Engineering, Kookmin University) ;
  • Se-Eun Shin (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 안유정 (순천대학교 신소재공학과) ;
  • 한주연 (국민대학교 신소재공학과) ;
  • 최현주 (국민대학교 신소재공학과) ;
  • 신세은 (순천대학교 신소재공학과)
  • Received : 2023.06.15
  • Accepted : 2023.06.22
  • Published : 2023.06.28

Abstract

Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

Keywords

Acknowledgement

본 연구는 2023년도 과학기술정보통신부의 재원으로 한국연구재단의 지원(NRF-2021R1I1A3050323)으로 수행되었습니다.

References

  1. M. P. Hong, J. H. Sung and Y. S. Kim: J. Mater. Process. Technol., 31 (2022) 309.
  2. M. C. Kang, D. H. Ye and G. H Go: J. Weld. Join., 34 (2016) 9.
  3. W. S. Kim, M. P. Hong, Y. G. Kim, C. H. Suh, J. W. Lee, S. H. Lee and J. H. Sung: J. Weld. Join., 32 (2014) 10.
  4. W. H. Kim, U. J. Go and J. H. Kim: J. Powder Mater., 29 (2022) 314.
  5. S. M. So, W. H. Choi, K. H. Kim, J. S. Park, M. S. Kim, J. G. Park, Y. S. Lim and H. S. Kim: Ceram. Int., 29 (2019) 338.
  6. F. Thevenot: J. Eur. Ceram. Soc., 6 (1990) 205.
  7. J. L. Wang, W. S. Lin, Z. W. Jiang, L. H. Duan and G. L. Yang: Ceram. Int., 40 (2014) 6793.
  8. D. H. Lee, K. H. Oh, J. H. Kim, Y. D. Kim and S. B. Lee: Compos. Res., 35 (2020) 241.
  9. D. G. Ahn: Int. J. Precis. Eng. Manuf. Green Technol., 8 (2021) 703.
  10. D. Svetlizky, M. Das, B. Zheng, A. L. Vyatskikh, S. Bose, A. Bandyopadhyay, J. M. Schoenung, E. J. Lavernia and N Eliaz: Mater. Today, 49 (2021) 271.
  11. S. M. Yoo, S. E. Shin, N. Takata and M. Kobashi: J. Mater. Sci., 57 (2022) 1.
  12. S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser: Mater. Sci. Eng. A, 513 (2009) 311.
  13. S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser: J. Mater. Process. Technol., 178 (2006) 135.