DOI QR코드

DOI QR Code

Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment

Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색

  • Suwon Park (School of Materials Science and Engineering, Kookmin University) ;
  • Yongwook Song (School of Materials Science and Engineering, Kookmin University) ;
  • Jiyoon Yeo (School of Materials Science and Engineering, Kookmin University) ;
  • Songyun Han (School of Materials Science and Engineering, Kookmin University) ;
  • Hyunjoo Choi (School of Materials Science and Engineering, Kookmin University)
  • 박수원 (국민대학교 신소재공학부) ;
  • 송용욱 (국민대학교 신소재공학부) ;
  • 여지윤 (국민대학교 신소재공학부) ;
  • 한송윤 (국민대학교 신소재공학부) ;
  • 최현주 (국민대학교 신소재공학부)
  • Received : 2023.06.15
  • Accepted : 2023.06.23
  • Published : 2023.06.28

Abstract

Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Keywords

Acknowledgement

이 성과는 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A5A1030054).

References

  1. M. Todor and I. Kiss: Appl. Eng., 1 (2016) 91.
  2. D. Blanco, E. M. Rubio, R. M. Lorente-Pedreille and M. A. Saenz-Nuno: Metals, 12 (2022) 9.
  3. S. N. Reddy K. V. Maranan, T. W. Simpson, T. Palmer and C. J. Dickman: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2016).
  4. D. Jankovics and A. Barari: IFAC-PapersOnLine, 52 (2019) 212.
  5. T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019) 1026.
  6. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater. Sci., 92 (2018) 112.
  7. W. E. Frazier: J. Mater. Eng. Perform., 23 (2014) 1917. https://doi.org/10.1007/s11665-014-0958-z
  8. A. Bandyopadhyay, K. D. Traxel, M. Lang, M. Juhasz, N. Eliaz and S. Bose: Mater. Today, 52 (2022) 207.
  9. S. Ozbilen: Powder Metall., 1 (1999) 77.
  10. P. A. Hooper: Addit. Manuf., 22 (2018), 548.
  11. C. Brice, R. Shenoy, M. Kral and K. Buchannan: Mater. Sci. Eng. A, 648 (2015) 9.
  12. Y. Song, J. Kim, S. Park and H. Choi: J. Powder Mater., 29 (2022) 233.
  13. J. P. Lokker, N. M. van der Pers, A. H. Verbruggen, G. C. A. M. Janssen, J. F. Jongste and S. Radelaar: J. Appl. Phys., 87 (2000) 682.