DOI QR코드

DOI QR Code

Effects of the Content of MgO Additive and Sintering Temperature on the Densification of Alumina Insulator

인슐레이터용 알루미나의 치밀화에 미치는 MgO의 함량과 소결 온도의 영향

  • Ri Joo Kim (Department of Environment & Energy Engineering, Sungshin University) ;
  • Han Gyeol Jeong (Department of Environment & Energy Engineering, Sungshin University) ;
  • Ye Ji Son (Department of Environment & Energy Engineering, Sungshin University) ;
  • Sang Ki Ko (R&D center, KO-NICS) ;
  • Hyun Seon Hong (Department of Environment & Energy Engineering, Sungshin University)
  • 김리주 (성신여자대학교 청정융합에너지공학과) ;
  • 정한결 (성신여자대학교 청정융합에너지공학과) ;
  • 손예지 (성신여자대학교 청정융합에너지공학과) ;
  • 고상기 (코닉스 기술연구소) ;
  • 홍현선 (성신여자대학교 청정융합에너지공학과)
  • Received : 2023.06.15
  • Accepted : 2023.06.26
  • Published : 2023.06.28

Abstract

The influence of MgO addition on the densification and microstructure of alumina (Al2O3) was studied. Compacted alumina specimens were manufactured using ball-milling and one-directional pressing followed by sintering at temperatures below 1700℃. Relative density, shrinkage, hardness, and microstructure were investigated using analytical tools such as FE-SEM, EDS, and XRD. When the MgO was added up to 5.0 wt% and sintered at 1500℃ and 1600℃, the relative density exhibited an average value of 97% or more at both temperatures. The maximum density of 99.2% was with the addition of 0.5 wt% MgO at 1500℃. Meanwhile, the specimens showed significantly lower density values when sintered at 1400℃ than at 1500℃ and 1600℃ owing to the relatively low sintering temperature. The hardness and shrinkage data also showed a similar trend in the change in density, implying that the addition of approximately 0.5 wt% MgO can promote the densification of Al2O3. Studying the microstructure confirmed the uniformity of the sintered alumina. These results can be used as basic compositional data for the development of MgO-containing alumina as high-dielectric insulators.

Keywords

Acknowledgement

본 연구는 중소기업청 기술혁신사업(S3152379, 대형(1 m × 2 m급 이상) CIP 장비를 활용한 반도체 에칭 공정용 저 유전손실을 갖는 500 mm 급 고밀도 세라믹 Isolator 국산화 기술 개발)에 의해 수행되었습니다.

References

  1. Y. Meng, G. Gong, D. Wei, Y. Xie and Z. Yin: Ceram Int., 40 (2014) 10677.
  2. R. H. Piva, P. Vilarinho, M. R. Morelli, M. A. Fiori and O. R. K. Montedo: Ceram Int., 39 (2013) 7323.
  3. J. M. Amigo, F. J. Serrano, M. A. Kojdecki, J. Bastida, V. Esteve, M. M. Reventos and F. Marti: J. Eur. Ceram. Soc., 25 (2005) 1479.
  4. M. Touzin, D. Goeuriot, C. Guerret-Piecourt, D. Juve and H. J. Fitting: J. Eur. Ceram. Soc., 30 (2010) 805.
  5. N. A. Andreeva and S. S. Ordan'yan: Refract. Ind. Ceram., 44 (2003) 277.
  6. M. Sathiyakumar and F. D. Gnanam: J. Mater. Process Technol., 133 (2003) 282.
  7. K. Kim, S. H. Baik and S. S. Ryu: J. Powder Mater., 25 (2018) 494.
  8. D. C. N. Fabris, M. B. Polla, J. Acordi, A. L. Luza, A. M. Bernardin, A. D. NoniJr. and O. R. K. Montedo: Mater. Sci. Eng. A, 781 (2020) 139237.
  9. E. Medvedovski: Ceram Int., 32 (2006) 369.
  10. J. Forrester, H. J. Goodshaw, E. H. Kisi and G. J. Suaning: J. Aust. Ceram. Soc., 44 (2008) 47.
  11. R. L. Coble and J. E. Burke: Prog. Ceram. Sci., 3 (1963) 197.
  12. P. J. Jorgensen and J. H. Westbrook: J. Am. Ceram. Soc., 47 (1964) 332.
  13. I. B. Cutler, C. Bradshaw, C. J. Christensen and E. P. Hyatt: J. Am. Ceram. Soc., 40 (1957) 134.
  14. J. A. Lee and J. J. Kim: J. Korean Ceram. Soc., 39 (2002) 1083.
  15. S. J. Bennison and M. P. Harmer: J. Am. Ceram. Soc., 68 (1985) 22.
  16. W. J. Smothers and H. J. Reynolds: J. Am. Ceram. Soc., 37 (1954) 588.
  17. H. P. Cahoon and C. J. Christensen: J. Am. Ceram. Soc., 39 (1956) 337.
  18. M. P. Harmer and R. J. Brook: J. Mater. Sci., 15 (1980) 3017.
  19. A. Krell and A. Bales: Int. J. Appl. Cerm. Technol., 8 (2011) 1108.