• 제목/요약/키워드: $B$-algebra

검색결과 320건 처리시간 0.025초

CONTINUITY OF HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.71-74
    • /
    • 1983
  • The problems of the continuity of homomorphisms between Banach algebras have been studied widely for the last two decades to obtain various fruitful results, yet it is far from characterizing the calss of Banach algebras for which each homomorphism from a member of the class into a Banach algebra is conitnuous. For commutative Banach algebras A and B a simple proof shows that every homomorphism .theta. from A into B is continuous provided that B is semi-simple, however, with a non semi-simple Banach algebra B examples of discontinuous homomorphisms from C(K) into B have been constructed by Dales [6] and Esterle [7]. For non commutative Banach algebras the problems of automatic continuity of homomorphisms seem to be much more difficult. Many positive results and open questions related to this subject may be found in [1], [3], [5] and [8], in particular most recent development can be found in the Lecture Note which contains [1]. It is well-known that a$^{*}$-isomorphism from a $C^{*}$-algebra into another $C^{*}$-algebra is an isometry, and an isomorphism of a Banach algebra into a $C^{*}$-algebra with self-adjoint range is continuous. But a$^{*}$-isomorphism from a $C^{*}$-algebra into an involutive Banach algebra is norm increasing [9], and one can not expect each of such isomorphisms to be continuous. In this note we discuss an isomorphism from a commutative $C^{*}$-algebra into a commutative Banach algebra with dense range via separating space. It is shown that such an isomorphism .theta. : A.rarw.B is conitnuous and maps A onto B is B is semi-simple, discontinuous if B is not semi-simple.

  • PDF

NEW ALGEBRAS USING ADDITIVE ABELIAN GROUPS I

  • Choi, Seul-Hee
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.407-419
    • /
    • 2009
  • The simple non-associative algebra $N(e^{A_S},q,n,t)_k$ and its simple sub-algebras are defined in the papers [1], [3], [4], [5], [6], [12]. We define the non-associative algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$ and its antisymmetrized algebra $\overline{WN_{(g_n,\mathfrak{U}),m,s_B}}$. We also prove that the algebras are simple in this work. There are various papers on finding all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra (see [3], [5], [6], [9], [12], [14], [15]). We also find all the derivations $Der_{anti}(WN(e^{{\pm}x^r},0,2)_B^-)$ of te antisymmetrized algebra $WN(e^{{\pm}x^r}0,2)_B^-$ and every derivation of the algebra is outer in this paper.

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • 대한수학회보
    • /
    • 제30권2호
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

HOMOMORPHISMS BETWEEN POISSON BANACH ALGEBRAS AND POISSON BRACKETS

  • PARK, CHUN-GIL;WEE, HEE-JUNG
    • 호남수학학술지
    • /
    • 제26권1호
    • /
    • pp.61-75
    • /
    • 2004
  • It is shown that every almost linear mapping $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ of a unital Poisson Banach algebra ${\mathcal{A}}$ to a unital Poisson Banach algebra ${\mathcal{B}}$ is a Poisson algebra homomorphism when h(xy) = h(x)h(y) holds for all $x,y{\in}\;{\mathcal{A}}$, and that every almost linear almost multiplicative mapping $h:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a Poisson algebra homomorphism when h(qx) = qh(x) for all $x\;{\in}\;{\mathcal{A}}$. Here the number q is in the functional equation given in the almost linear almost multiplicative mapping. We prove that every almost Poisson bracket $B:{\mathcal{A}}\;{\times}\;{\mathcal{A}}\;{\rightarrow}\;{\mathcal{A}}$ on a Banach algebra ${\mathcal{A}}$ is a Poisson bracket when B(qx, z) = B(x, qz) = qB(x, z) for all $x,z{\in}\;{\mathcal{A}}$. Here the number q is in the functional equation given in the almost Poisson bracket.

  • PDF

PROPERTIES OF GENERALIZED BIPRODUCT HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.323-333
    • /
    • 2010
  • The biproduct bialgebra has been generalized to generalized biproduct bialgebra $B{\times}^L_H\;D$ in [5]. Let (D, B) be an admissible pair and let D be a bialgebra. We show that if generalized biproduct bialgebra $B{\times}^L_H\;D$ is a Hopf algebra with antipode s, then D is a Hopf algebra and the identity $id_B$ has an inverse in the convolution algebra $Hom_k$(B, B). We show that if D is a Hopf algebra with antipode $s_D$ and $s_B$ in $Hom_k$(B, B) is an inverse of $id_B$ then $B{\times}^L_H\;D$ is a Hopf algebra with antipode s described by $s(b{\times}^L_H\;d)={\Sigma}(1_B{\times}^L_H\;s_D(b_{-1}{\cdot}d))(s_B(b_0){\times}^L_H\;1_D)$. We show that the mapping system $B{\leftrightarrows}^{{\Pi}_B}_{j_B}\;B{\times}^L_H\;D{\rightleftarrows}^{{\pi}_D}_{i_D}\;D$ (where $j_B$ and $i_D$ are the canonical inclusions, ${\Pi}_B$ and ${\pi}_D$ are the canonical coalgebra projections) characterizes $B{\times}^L_H\;D$. These generalize the corresponding results in [6].

BIPRODUCT BIALGEBRAS WITH A PROJECTION ONTO A HOPF ALGEBRA

  • Park, Junseok
    • 충청수학회지
    • /
    • 제26권1호
    • /
    • pp.91-103
    • /
    • 2013
  • Let (D,B) be an admissible pair. Then recall that $B\;{\times}^L_HD^{{\rightarrow}{\pi}_D}_{{\leftarrow}i_D}\;D$ are bialgebra maps satisfying ${\pi}_D{\circ}i_D=I$. We have solved a converse in case D is a Hopf algebra. Let D be a Hopf algebra with antipode $S_D$ and be a left H-comodule algebra and a left H-module coalgebra over a field $k$. Let A be a bialgebra over $k$. Suppose $A^{{\rightarrow}{\pi}}_{{\leftarrow}i}D$ are bialgebra maps satisfying ${\pi}{\circ}i=I_D$. Set ${\Pi}=I_D*(i{\circ}s_D{\circ}{\pi}),B=\Pi(A)$ and $j:B{\rightarrow}A$ be the inclusion. Suppose that ${\Pi}$ is an algebra map. We show that (D,B) is an admissible pair and $B^{\leftarrow{\Pi}}_{\rightarrow{j}}A^{\rightarrow{\pi}}_{\leftarrow{i}}D$ is an admissible mapping system and that the generalized biproduct bialgebra $B{\times}^L_HD$ is isomorphic to A as bialgebras.

C*-ALGEBRA-VALUED EXTENDED QUASI b-METRIC SPACES AND FIXED POINT THEOREMS WITH AN APPLICATION

  • Qusuay H. Alqifiary;Jung Rye Lee
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권4호
    • /
    • pp.407-416
    • /
    • 2023
  • In this paper, we introduce the concept of C*-algebra-valued quasi b-metric space and prove some existence and uniqueness theorems. Furthermore, we prove the Hyers-Ulam stability results for fixed point problems via C*-algebra-valued extended quasi b-metric space.

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.