• Title/Summary/Keyword: ${\gamma}-T_2$-space

Search Result 40, Processing Time 0.019 seconds

ON A CLASS OF $\gamma$-PREOPEN SETS IN A TOPOLOGICAL SPACE

  • Krishnan, G. Sal Sundara;Balachandran, K.
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.131-149
    • /
    • 2006
  • In this paper we introduce the concept of $\gamma$-preopen sets in a topological space together with its corresponding $\gamma$-preclosure and $\gamma$-preinterior operators and a new class of topology $\tau_{{\gamma}p}$ which is generated by the class of $\gamma$-preopen sets. Also we introduce $\gamma$-pre $T_i$ spaces(i=0, $\frac{1}{2}$, 1, 2) and study some of its properties and we proved that if $\gamma$ is a regular operation, then$(X,\;{\tau}_{{\gamma}p})$ is a $\gamma$-pre $T\frac{1}{2}$ space. Finally we introduce $(\gamma,\;\beta)$-precontinuous mappings and study some of its properties.

  • PDF

REMARKS ON WEAKLY $s{\gamma}$-CONTINUOUS FUNCTIONS

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.269-273
    • /
    • 2010
  • We introduce the concepts of strongly $s{\gamma}$-closed graph, $s{\gamma}$-compactness and $s{\gamma}-T_2$ space and study the relationships between such concepts and weakly $s{\gamma}$-continuous functions.

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

WEAK AND STRONG CONVERGENCE TO COMMON FIXED POINTS OF NON-SELF NONEXPANSIVE MAPPINGS

  • Su, Yongfu;Qin, Xiaolong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.437-448
    • /
    • 2007
  • Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let $T_1,\;T_2\;and\;T_3\;:\;K{\rightarrow}E$ be nonexpansive mappings with nonempty common fixed points set. Let $\{\alpha_n\},\;\{\beta_n\},\;\{\gamma_n\},\;\{\alpha'_n\},\;\{\beta'_n\},\;\{\gamma'_n\},\;\{\alpha'_n\},\;\{\beta'_n\}\;and\;\{\gamma'_n\}$ be real sequences in [0, 1] such that ${\alpha}_n+{\beta}_n+{\gamma}_n={\alpha}'_n+{\beta'_n+\gamma}'_n={\alpha}'_n+{\beta}'_n+{\gamma}'_n=1$, starting from arbitrary $x_1{\in}K$, define the sequence $\{x_n\}$ by $$\{zn=P({\alpha}'_nT_1x_n+{\beta}'_nx_n+{\gamma}'_nw_n)\;yn=P({\alpha}'_nT_2z_n+{\beta}'_nx_n+{\gamma}'_nv_n)\;x_{n+1}=P({\alpha}_nT_3y_n+{\beta}_nx_n+{\gamma}_nu_n)$$ with the restrictions $\sum^\infty_{n=1}{\gamma}_n<\infty,\;\sum^\infty_{n=1}{\gamma}'_n<\infty,\; \sum^\infty_{n=1}{\gamma}'_n<\infty$. (i) If the dual $E^*$ of E has the Kadec-Klee property, then weak convergence of a $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is proved; (ii) If $T_1,\;T_2\;and\;T_3$ satisfy condition(A'), then strong convergence of $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is obtained.

On a Class of γ*-pre-open Sets in Topological Spaces

  • Krishnan, G. Sai Sundara;Saravanakumar, D.;Ganster, M.;Ganster, M.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.173-188
    • /
    • 2014
  • In this paper, a new class of open sets, namely ${\gamma}^*$-pre-open sets was introduced and its basic properties were studied. Moreover a new type of topology ${\tau}_{{\gamma}p^*}$ was generated using ${\gamma}^*$-pre-open sets and characterized the resultant topological space (X, ${\tau}_{{\gamma}p^*}$) as ${\gamma}^*$-pre-$T_{\frac{1}{2}}$ space.

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

Development of protection coating material on the surface of insulation tiles of space vehicle (우주선용 고온 절연체의 표면 코팅 재료 개발)

  • 김영채;문세기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.370-377
    • /
    • 1995
  • The recombination of oxygen and nitrogen atoms on the surfaces of two coating m materials of the Space Shuttle Orbiter (SSO), a reaction cured glass (RCG) and a spinel (C742), was investigated. The recombination probability, $\gamma$, i.e., the probability that atoms im p pinging on the surface will recombine, was measured in a diffusion reactor. Value of $\gamma$ for oxy g gen atom on C742 ($3 {\times} 10^{-2}$) was much higher than that on RCG ($4 {\times} 10^{-4}$) at the tempera t ture of SSO re-entry (ca. 1000K). The higher value of $\gamma$ on C742 indicates a higher number d density of active sites than RCG. It suggests the possibility of designing less active surfaces by i inducing the desorption at lower temperature.

  • PDF

OPERATIONS ON FUZZY TOPOLOGICAL SPACES

  • 박진한;박진근;박성준
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.59-62
    • /
    • 2000
  • In this paper we introduce the notion of fuzzy ${\gamma}$-open sets by using an operation ${\gamma}$ on fuzzy topological space (X, $\tau$) and investigate the related fuzzy topological properties of the associated fuzzy topology $\tau$$\_$${\gamma}$/ and $\tau$. And ${\gamma}$-T$\_$i/(i=0,1,2) separation axioms are defined in fuzzy topological spaces and the validity of some results analogous to those in fuzzy T$\_$i/ spaces due to Ganguly and Saha [2] are examined.

  • PDF