J. Korean Math. Soc. 44 (2007), No. 4, pp. 1025-1050

A CHANGE OF SCALE FORMULA FOR CONDITIONAL
WIENER INTEGRALS ON CLASSICAL WIENER SPACE

IL Yoo, KuN Soo CHANG, DoNg HyunN CHO, BYOUNG Soo KM,
AND TEUK SEOB SONG

ABSTRACT. Let Xy (z) = (foT ai(s)dz(s),..., fOT ag(s)dz(s)) and X-(x)
= (x(t1), ..., z(tx)) on the classical Wiener space, where {c1,..., 0}
is an orthonormal subset of L2(0,T] and 7: 0 < t1 < --- <ty =T is a
partition of [0, T).

In this paper, we establish a change of scale formula for conditional
Wiener integrals E[Gr|Xj] of functions on classical Wiener space having
the form

Cr(z) = F(z)¥ (/OT vi(s)dz(s), . ., /OT vr(s)da:(s)) ,

for F € Sand ¥ =4+ ¢y € Lp(R"), ¢ €M(R")), which need not
be bounded or continuous. Here § is a Banach algebra on classical
Wiener space and M(R") is the space of Fourier transforms of measures
of bounded variation over R”. As results of the formula, we derive a
change of scale formula for the conditional Wiener integrals E[Gr|X7]
and E[F|X;]. Finally, we show that the analytic Feynman integral of F
can be expressed as a limit of a change of scale transformation of the con-
ditional Wiener integral of F' using an inversion formula which changes
the conditional Wiener integral of F' to an ordinary Wiener integral of F,
and then we obtain another type of change of scale formula for Wiener
integrals of F'.

1. Introduction and preliminaries

It is well-known that the classical Wiener space Cy[0, T is the space of real-
valued continuous functions on [0, T'] which vanish at 0. As mentioned in [12],
Wiener measure and Wiener measurability behave badly under change of scale
transformation and under translation ([1, 2]). Various kinds of the change
of scale formulas for Wiener integrals of bounded functions were developed
on the clagsical and abstract Wiener spaces B ([5, 10, 11, 13]). But, in [12],
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Chang, Kim, Song and Yoo established a change of scale formula for the Wiener
integrals of functions on abstract Wiener space which have the form

Fi(z) = G(x)¥((e1,2)~,..., (en,T)™)

for G € F(B), the Fresnel class ([6]) and ¥ = ¢ + ¢, where ¢ € L,(R"),1 <
p < oo and ¢ is the Fourier transform of a measure of bounded variation over
R™.

On the other hand, in [9], Park and Skoug introduced a simple formula for
conditional Wiener integrals which evaluate the conditional Wiener integral
of a function given X, as a Wiener integral of the function and in [7], using
the formula, they expressed the analytic Feynman integral of the functions in
Cameron and Storvick’s Banach algebra S ([3]) as an integral of the conditional
analytic Feynman integral of the functions. Further, in [8], they extended
the simple formula with more generalized conditioning function X} and then,
evaluated the conditional Wiener integrals of various functions.

In this paper, under the conditioning function X}, we derive a change of scale
formula for the conditional Wiener integrals of possibly unbounded functions
on classical Wiener space which have the form

G (z) = F(z)¥ ( /O " on(s)da(s). ... /0 ) vr(s)dw(s))

for F € Sand ¥ = ¢ + ¢, where ¢y € L,(R"),1 < p < o0, and ¢ is the
Fourier transform of a measure of bounded variation over R”. Note that r is a
positive integer and the stochastic integrals mean the Paley-Wiener-Zygmund
integrals with an orthonormal subset {v1,...,v,} of Ls[0,T]. As corollaries of
the formula, we derive a change of scale formula for the conditional Wiener in-
tegral of G, with the conditioning function X,. Finally, under the conditioning
functions X and X,, we show that the analytic Feynman integral of F can
be expressed as a limit of a change of scale transformation of the conditional
Wiener integral of F' using an inversion formula which changes the conditional
Wiener integral of F' to an ordinary Wiener integral of F.

Let Co[0, T be the classical Wiener space with the Wiener measure m, and
let (-,-) and (,-) denote the Paley-Wiener-Zygmund integral and the inner
product on the real Hilbert space Ls[0, T, respectively. Let k be an arbitrary

positive integer, but fixed, and let {a1,...,ax} be an orthonormal subset of
L»[0,T]. Define X, : Cp[0,T] — R* by
1) Xi(z) = ((a1,2), ..., (ak, z))

for z € Co[0,T] and let Z;(t) = fot a;(s)ds on [0,7T] for j = 1,...,k. Further,
for v € L0, T, let

k

(2) Pov =Y (v,Z;)ey

Jj=1
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be the orthogonal projection from L[0,7] onto the subspace generated by

{a1,..., ax}, and let wi(v) = v — Prv which is orthogonal to each «;. For
€€ Cyl0,T) and € = (&1, .., &) € R¥, let
k
3) zr(t) =Y (ay,2)7Z;(t)
j=1
and
k k

(4) &) = &loy, Ty = > &Z;(b),

j=1 Jj=1

where Ijg 4 is the indicator function of the interval [0,].

Let C and C, denote the set of complex numbers and the set of complex
numbers with positive real parts, respectively.

Let F : Cp[0,T] — C be integrable and let X be a random vector on Co[0, T
Then, we have the conditional expectation E[F|X] given X from a well-known
probability theory. Further, there exists a Px-integrable function 1 on the
value space of X such that E[F|X](z) = (¢ o X)(z) for m-a.e. x € Cy[0,T],
where Px is the probability distribution of X. The function + is called the
conditional Wiener integral of F' given X and it is also denoted by E[F|X].

Lemma 1 ([8, Theorem 2]). Let F be integrable on Cp[0,T] and let Xy be
gwen by (1). Then we have

E[F|X¢)(€) = E[F(z — o5 + &)]
for a.e. € € R®, where x) and & are given by (3) and (4), respectively.

A subset N of Cy[0,T] is called a scale-invariant null set if m(AN) = 0
for any A > 0. A property is said to hold scale-invariant almost everywhere
(in abbreviation, s-a.e.) if it holds except for a scale-invariant null set. For a
function F defined on Co[0,T] and for A > 0, let F>(z) = F(\"1/2z).

Now, suppose that E[F*|X}] exists. From Lemma 1, we have

(5) E[F}XR](€) = EIF(\(z — i) + )]

for Pyr-ae. £ € R¥, where Py is the probability distribution of X} on
X} X) k

(R, B(RF)). If E[F(A\~2(z — z1) + £)] has the analytic extension J}(F)(£)

on C; as a function of A, then we call J} (F)(§) the conditional analytic Wiener
integral of F given X}, over Cy[0,T] with parameter A and write

E*™ [FIX)(€) = T3 (F)(E).

Moreover, for a non-zero real g, if the limit

=

lim B4 [F] X ()

A—>—iq
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exists, where A approaches to —ig through C, , then it is called the conditional
analytic Feynman integral of F' given X over Cy[0,T] with parameter ¢ and
we write

Eanfs [F|Xk](€) = /\_l_i)rgq Fanwa [FIXk](g)

2. Conditional analytic Wiener and Feynman integrals

Let {v1,...,vr} be an orthonormal subset of Ly[0,T]. For 1 < p < oo, let
AP be the space of all cylinder functions F,. on Cy[0,T] of the form

(6) Fr(z) =f((v1,x),...,(vr,x))

for s-a.e. x in Cy[0,T], where f : R — R is in L,(R"). Let AL be the
space of all functions of the form (6) with f € L. (R"), the space of essentially
bounded functions on R”. Note that, without loss of generality, we can take f
to be Borel measurable.

Let M = M(L3[0,T]) be the class of all C-valued Borel measures on L3[0, T
with bounded variation and let S be the space of all s-equivalence classes of
functions F' which for ¢ € M has the form

(7) F(z) =/ exp{i(v, z)}do(v)

L2[0,T]
for z € Cy[0,T). Note that S is a Banach algebra which is equivalent to M
with the norm || F|| = ||o]|, the total variation of o ([3]).

Now, let {u1 — Pru1,...,u — Pru,} be a maximal independent subset of
{v1 = Prv1,...,vr — Prv,} with ' < 7 if it exists, where Py is the orthogonal
projection given by (2). Let {e1,...,en} be the orthonormal set obtained
from {u; — Prui,...,u,r — Pru,} using Gram-Schmidt orthonormalization

process. For convenience, we introduce useful notations from the process. For
v € L3[0,T], we obtain an orthonormal set {ei, ..., ey, e, 41} as follows;

®) w=] forj=1,...,7
c;(v) = -
’ \/”71”5 - erzl (v,e)2 forj=1"+1

and

erpt = — [v - \;“cj(v)ej]

crr41(v) =
if ¢rr41(v) # 0. Then we have
r'+1 r’+1
(9) v=3 cle; and fulf = [e; ()
Jj=1 i=1



A CHANGE OF SCALE FORMULA 1029

Note that (9) hold trivially for the case ¢,/41(v) = 0. Further, let

(10) v —Prvr = wilv) = Zajlej

T
= Pror = wk(vr)zzajrej

be linear combinations of the e;’s and let

11 @12 o Olr
Q1 Q22 - Qor

(11) A=
Qpr1 Qprg - Qpry

be the transpose of coefficient matrix of the combinations in (10). Now, for
v € L3[0,T] and m-a.e. z € Cy[0,T], we have

k
(12) (’U,CE - xk) = (U’Z) - Z(v7 Zj)(ajvx)
kj_
= (v — Z(U,Zj)aj, x) = (wg(v),z)

by the linearity of Paley-Wiener-Zygmund integrals.
The following lemma is useful to prove several results.

Lemma 2. Let v € L3[0,T] and let a > 0. Further, let F,. be given by (6) and
let

I(a) = E[F.(a(z — z)) exp{ia(v,z — ) }].

Then we have

. 1 r' /2 a 7
I(a) = <W) - f(i A) eXP{‘Z—[

Efsoiun]
(w13 f e

with @y = (u1,...,um), where by = we mean that if either side exists, then
both sides exist and they are equal, and A is given by (11) and c;(wk(v)) by (8)
with replacing v by wi(v).
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Proof. By (6) and (12}, we have
I(a) = /
Col0,T)

x exp{ia(v, z — xx)}dm(z)
= [ Halwr)0),. o), 2)
Col0,T)
x exp{ia(wg(v), z) }dm(z).

Since (e;, -)’s are mean zero Gaussian with variance 1 and they are independent,
we have

Ia) = /COMJ f(a <; aji(ey, ), .. ,jz:‘:ajr(ej,x)))

r'+1

<enp {ia 3 ey un(0)es o) pam(a)

Jj=1

S~y

(a((vi, 2 — xk), - . -, (v, @ — 1))

r+1

1 (r'+1)/2
(%) /]RT'+1 flat A) exp{ia Z cj(wg(v))y,

Jj=1

I

r’+1

Z u?}d(ul,...,uTIH)

Jj=1

[N

by (9) and (10). Using the following well-known integration formula

2, m\ /2 b?
(13) /Rexp{-—au +’Lbu}du= <E> exp{_zg}

for @ € C4 and any real b, we have

10 = () [ i@ e [E[ﬂ reun(e)]

=1

(0] fa
by the change of variable theorem, where @,» = (u1,. .., ur). a

Let {v1,...,v,} be an orthonormal set in L[0, 7] such that {wx(v1), ...,
wk(vr)} is an independent set. Using Gram-Schmidt orthonormalization pro-
cess we can have the orthonormal set {ey,...,e,} from {wi(v1),..., wk(v,)}.
Further, we can take a complete orthonormal set {e; : 5 = 1,2,...} containing
{e1,...,e:}. In this case, we have ' = r in the equations (8), (9), (10) and
(11) so that the matrix A is square and non-singular. From now on, unless
otherwise specified, the sets {vq,...,v,} and {es,...,e,,€r11,...} are the sets
as mentioned just before.
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Remark 1. A possible example of the above complete orthonormal set can be
obtained from the following process. Let 0 =t < t; < -+ < t, = T be a
partition of [0,7] and for I =1,...,r, let

ha(t) = (—1)t192-1 . tio1+t 2t-1
T - )P 2
ift, 1 <t<t;(j=1,...,k).
Further, let a; = \/—1———1[”“”],] for 5 = 1,...,k. Then, {h1,...,h} is

tj—tj—1
independent and wg (hi) = hy=Prhy = hy— Y _ (i, )0 = hyfor I =1,
Let {v1, ..., v} be the orthonormal set obtained from {h, ..., h,} using Gram-
Schmidt orthonormalization process. Now, let

v = Z Bijh;
j=1

for I =1,...,r. Then we have wi(v;) = v; — Prv; = Z;zl Bij(h; — Pxhj) =
E;Zl Bijh; = v;. Using Stone-Weierstrass theorem and Gram-Schmidt or-

thonormalization process again, we can have the desired complete orthonormal
set.

For convenience, let

(14) 6(5) = ((vlaéc)a"‘v(vra&))

= (éfj(vl,zj)’ .. wéfj(vmzﬂ)-

Now, we have the following theorem which evaluate the conditional analytic
Wiener integral of the product of the function in & and the cylinder function.

Theorem 3. For s-a.e. © € Cy[0,T), let
(15) Gr(z) = F(z)F(x),
where F, € AP (1<p<o0)and F € S are given by (6) and (7), respectively.

Further, let Xy, be given by (1). Then, for A € C4, E“[G,| Xy(€) exists for
a.e. £ € R¥ and under the notations given as in Lemma 2, it is given by

B Gy Xk (€)

- ()7, ewliwda [ sa @)

cenp 55 [ S + s ) = k)] o)

where iy = (u1,...,u,) and U(§) is given by (14).
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Proof. Using Fubini’s theorem, we have for A > 0 and a.e. 5 € Rk
ElG- (A2 (z — 2x) + &)]
= [ el ENERN -0+ &)
L,[0,T)
x exp{iA"Y%(v, x — x)Hdo(v)

<o 35 [iwuj + o) - fon)I] b dot)

=1

Il

by Lemma 2 and (14). Here, the justification of using Fubini’s theorem, is
contained in the following argument. By Bessel’s inequality, we have for A € C.

1008 = [ 170+ 1) oo 53 [l + s tunto)
(o)} i
= [ 1@+ a@l e 355 (luwli -
jz;jl[cj(wk(v»]?) - %—*zu}du
< [ ir@a+a@) exp{—¥§uﬁ}dﬂr-
Since

a1 B
a0y [ 1f@a+ i@ i, = e [ 1f@ P,

by the change of variable theorem, we have
a7 [ 108dsle) <o
L,]0,T)

from Hélder’s inequality. Now, by the analytic extension, we have the theorem.
O

When p = 1, we have the following corollary by the dominated convergence
theorem.

Corollary 4. Let the assumptions and notations be given as in Theorem 3
with F, € AY. Then, for a non-zero real g, E9"fa [Gr| Xk](€) exists for a.e.
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& € R* and it is given by

E*1[Gy | Xi](€)

_ (%)/ ’ / oy Rli6) [ r@asa@)

cop{ o [Slows + e an(? ~ (0] o).

=1

Let M(R") be the set of all functions ¢ on R” defined by

(18) dur, ..., up) = / exp{i Zujzj}dp(zl, ey Zr),
, et

where p is a complex Borel measure of bounded variation over R". Note that
(,-) denotes both the inner product on L»[0,7] and the dot product on R” if
any confusions are not occurred.

Theorem 5. Let ¢ be given by (18). Let K,(x) = ¢((v1,2),..., (vp,2)) for
s-a.e. x € Cy[0,T] and let G, = FK,., where F is given by (7). Further, let X},

—

be given by (1). Then, for a non-zero real g, E*™4[G,|Xy](€) exists for a.e.
£ e R* and it is gtven by

Eonfa [Grle](g)

/L2[0,T] /T exp{i[(v,gk) + (2, TE))] + 2%11' [Hwk(v)Hg
+2Zr:i6j(wk( )20 +Z(Z zlaﬂ) ]}dp 7)do(v)

Jj=11=1

with Z, = (z1,...,2r), where T(€) and c;(wk(v)) are given by (14) and (8) with
replacing v by wi(v), respectively.

Proof. Since ¢ is bounded, we have K, € .A(oo) By Theorem 3, for A € C,,
EA (G| X;](€) exists for a.e. £ € R¥ and it is given by

E*™ (G X) (€)

-

= (%)rm /Lz[o,T] exp{i(v, &)} ¢(UrA+U( )

3
conp{ 5 [3hins + s n(o)P ~ s3] oo,

=1
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where i, = (ua,...,u,). Hence, by (13), (18) and Fubini’s theorem, we have
E*™ (G| X ) (€)

+$ [Z[Am + cj(wi ()] - ”wk(v)ug] }dﬂrdp(é;)do(v)

Jj=1

Jj=11=1
r

sy + 55| Sl + cs(wn P ~ oI | b do(z ()

j=1

Lo o080+ (2150 - 55 [t ”2”,21;
c;(wi z,a,l+2(zzla,,> ]}dp Z)do(v).

Now, the theorem follows from Bessel’s inequality and the dominated conver-
gence theorem. O

From the above theorems and corollary, we have the following corollary by
the linearity of conditional Wiener and Feynman integrals on classical Wiener
space.

Corollary 6. Let F, € ,A,(f’)(l < p < o) and F be given by (6) and (7),
respectively, and K, be given as in Theorem 5. Further, let X}, be given by (1)
and g be a non-zero real number. Then E®™>[F(F, + Kr)|Xk](§) exists for
A€ Cy and a.e. £ € R¥, and it is given by

Eonwa [F(Fr + KT)|Xk](g)

- /Lzmexp{i(v,éc)—%uwm)n%}[( )m [ sta+a@)

T

X exp{ 21>\ Z[)\iuj + Cj(Wk(v))]z}dﬂr + /r EXP{ (2, 9(8)) %

[ ;;Cg (wi(v)) 205 + Z(Z Zlajl>2] }dp(z”r)} do(v),

where c;j(wi(v)) is given by (8) with replacing v by wx(v). In particular, if
F. € AV, then Eonfa [F(F, + K,)| X&) () exists for a.e. £ € R* and it is
obtained with replacing A by —iq in the right-hand side of the above equality.



A CHANGE OF SCALE FORMULA 1035

3. Change of scale formula for conditional Wiener integrals

In this section, we derive a change of scale formula for conditional Wiener
integrals of unbounded functions on classical Wiener space. Let {v1,...,v,}
and {ei,...,e,} be the orthonormal sets and let {ei,...,er, €r41,...} be the
complete orthonormal set as mentioned in Section 2.

Lemma 7. Let n > r and let F, be given by (6). Further, for A € C+ and
v € L2[0,TY, let

Ta(v)
= /CO[O’T] exp{ g e,z)’ +i(v,z - wk)}Fr(CC — z)dmp(z).

Then, we have

w2 () el A2 S e o - S

=1

" 1y -
X . flu-A )exp{ ) Z[)\zuj + cj(wk(v))]2}dur

with @, = (u1,...,u,), where by = we mean that if either side exists, then both
sides exist and they are equal, and c;{(wi(v)) is given by (8) for j=1,...,n+1
with replacing v by n.

Proof. By (12), we have
TA(v)

= / f(lvr,z —zk), ..., (Ur, T — xk)) exp{ Z (ej,x)?
Col0,T] j=1

+i(v,z — xk)}dm(x)

= /CO[(),T] f((wg(v1),z), ..., (we(vr), exp{ g eJ,x)2

+i(wi(v), ) }dm(z).

Since (e;, -)’s are mean zero Gaussian with variance 1 and they are independent,
by (9), (10) and (13), we have

. 1 (n+1)/2
ne = (5) [ a1 Zu
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n+1 n+1

+i Z cj(we (v))u; — % Z u?}d(ul, ety Ung1)

=1

A2 (%)/ exp{ 21 S e () - FHun)IB)

i=1
. A .
X - fu,A) exp{ 2 j;[)\wj + ¢ (wk (v))]2}duT
which is the desired result. O

Applying the method used in the proof of Theorem 5 to the result in Lemma
7, we have the following lemma.

Lemma 8. Let n > r and for A € C; and v € Ly[0,T), let

Ky(v) = / eXp{ €, T
A(v) o Z J

+i(v,x — zx) + Z zj vj,x—xk)}dm(x),

where z; €R for j=1,...,r. Then we have

Ky(v) = )\—n/2exp{/\2—_/\12[cj(wk —;ZZCj(wk(U))Zlajl
1 r T 2 1 )
——AFI(;zzaﬂ) - sl @I},

where a;i’s are given by (10) and c;(wx(v)) is given by (8) for j=1,...,n+1

with replacing v by n.
Proof. Let fi(uy,...,ur) = exp{i }__, zju;} on R” and let F; be given by (6)
with replacing f by fi. Then, by (13) and Lemma 7, we have

i) = 2(2) e 251 Z ei(wn(o)]? - 3wl

, 1 Ny, 2\ 4o
X . (@A) exp{2—): Z[)\zuj + ¢ (wi (v))] }du,«

=1

= (1) e 2 S e no - Lo}

=1
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x/ exp{ ZZzla]zu] 2)\2)\zu3+cg wi (v ))]Q}da‘r

j=11l=1
—-n/2 A-1 -
= A exp Q—AZ[CJ wi (v ZZCJ wi(v))zo
j=1 ] =11=1
X Z(Z Zlagz) ||wk IIz},
where @, = (u1,...,u,). Now, the proof is completed. O

Now we derive a relationship between the Wiener integral and the condi-
tional analytic Wiener integral on classical Wiener space.

Theorem 9. Let G, be given by (15) and the assumptions be given as in
Theorem 3. Then, for A € C4 and a.e. £ € R¥, we have

(19)  E*™G|Xx]()

= lim [A"/Q / exp{u Z(ej, m)z}Gr(x — z + & )dm(z)|.
n—oo Co[0,T] 2

j=1
Proof. Let n € N with n > r and let
1-A ) >
r, = expy —— Z(ej, x)° rGr(x — zx + & )dm(z).
Col0,T] 2 I
By Lemma 7 and Fubini’s theorem, we have

In

= /L2[O’T]exp{i(v,f_;c)} CO[O’T]exp{ gej, m—cck)}
x Fp(x — x + & )dm(z)do(v)

_ (XY AL o'

= () [ ewfieg -2 el

T

~gluwig} [ Tf<aTA+v<“)>exp{;A > i+ ey un o)l
diiydo(v),

where 4, = (u1,...,u,) and c¢;(wk(v)) is given by (8). Here, the justification
of using Fubini’s theorem is contained in the following argument. By Bessel’s
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inequality, we have for A € C

. o - 1
19t a+ (@) fexed 257 D leun) - gl
+§1X ;[)\iuj +c; (wk(v))]2} di,

[ isasae@) exp{§

o5 (wn ())? — ||wk(v)||§]
3 O )P

Jj=r+1 }

Z:
/IfurA+v£_>|exp{ Re)\z }dur,

which is integrable on L3[0,T7] from (6) and (16). Using the dominated con-
vergence theorem, Parseval’s relation and Theorem 3, we obtain

N[”

lim A\*/?T,

n—o0

- nli—>ngo|:<%)r/2/Lz[0T]exp{ z::
eswn)? = gl | [ @4+ (@)

X exp{ 2 Z[)\iuj + c;(we(v)) }durda ]
=1

_ (%)m /L . exp{i(v, £} / f@A+ (@)

r

x exp{ 21)\ [Z[)\iuj + ¢ (we (v))]° — llwi(v ] }

=1
dit-do(v) = B G| Xk (€).

O

Now we derive a relationship between the Wiener integral and the condi-
tional analytic Feynman integral on classical Wiener space. Using the method
given as in the proof of Theorem 9, the following corollary immediately follows
from Corollary 4, Parseval’s relation and the dominated convergence theorem.
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Corollary 10. Under the assumptions given as in Corollary 4, we have for
a.e. 6 € Rk

(200 E*(G,|Xk](€)

= lim [Az/ 2 / exp{1
n—ee Col0,T]

for any sequence {A\,}52, in C4 with A\, — —ig as n — co.

7" g(eg"w)z}Gr(z okt g’“)dm(x)]

Theorem 11. Let ¢ be given by (18). Let K.(z) = ¢((v1,),..., (vr,z)) for
s-a.e. x € Co[0,T) and let G, = FK,, where F is given by (7). Further, let
Xy be given by (1). Then the equation (19) holds for A € C4. and a.e. £ € R,

Proof. Let n € N with n > r and let

r, = / exp{ Z €, } (z — zx + £ )dm().
Co[0,7] j=1

By Fubini’s theorem and Lemma 8, for A € C, and a.e. £ € R¥, we have

Z(ej,x)2 +i(v,z — xk + &)}

/ A
= ex
L2[0,T} J Col0,T) 2 e

x K, (z — zx, + & )dm(z)do (v)

(0 £ 4 (5 1-AN e o
-/ o [ et &) + (5@ | O[O,T]e""{ 7 Ylen)
+i(v,z —xk) +1 Z zi(vj, ¢ — a:k)}dm(m)dp(é;)da(v)

= A xp{il(v, &) + (5, @)} expd 21
- 2~/L2[0T]/re p{i{(v, &) + (2, T} P{ 7
- 2
X Z CJ UJk ZZC] Wy U))Zlaﬂ 2/\ Z(Z zzaﬂ)
j=1

_’]lll

J—

_§||wk(v)||§}dp(5r)d0('”)’
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where Z. = (21,...,2,) and ¢;(wi(v)) is given by (8). Now, we have

Z c;(wi (v)))* — %ZZCj(wk(v))zlaﬂ

j=11=1

- exp{—_g )13 - 3l o)F] - B5] 3 fesunto
j=1 j=r+1
+ 'T [ - z2101 +c,(wk(v))] 2]}
S . j=1%=1

by Bessel’s inequality. Hence, by the dominated convergence theorem and
Parseval’s relation, we have the theorem from Theorem 5. a

Corollary 12. Let q be a non-zero real number and {\,}32,; be a sequence in
Cy with A, — —ig as n — oo. Under the assumptions given as in Theorem
11, for a.e. £ € R¥, the equation (20) holds.

Corollary 13. Let G, = F(F, + K,), where F, F, and K, are given as in
Corollary 6. Then, for A € C, and a.e. £ € R¥, the equation (19) holds.

Corollary 14. Let q be a non-zero real number and {A,}5; be a sequence in
C+ with Ay, — —iq as n — co. Moreover, let G, = F(F, + K,), where F is
given by (7) and F,, K, are given as in Corollary 4, Theorem 5, respectively.
Then, for a.e. £ € R¥, the equation (20) holds.

Our main result, namely, a change of scale formula for conditional Wiener
integrals on classical Wiener space, follows from Corollary 13.

Theorem 15. Let the assumptions be given as in Corollary 13. Then, for
v >0 and a.e. SER’“ we have

21)  E[Gr(v)|Xk(v)](E)

= lim ['y_"/ {
n—o0 CO[O,T]

Proof. Letting A = y~2 in (19), we have (21) from (5). a

Z €, }G (z —zx + §k)dm(x)

Now, letting F;. = 0, K, = 1 and A = v~2, we have the following corollary
from Corollaries 13 and 14. In addition, scrutinizing the proofs of Lemmas
2, 7, 8 and Theorems 3, 5, 9, 11, we can see that the choice of the complete
orthonormal set {e; : j = 1,2,...} is independent of the v;’s in this case.
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Corollary 16. Let F be given by (7) and {e; : j = 1,2,...} be any complete
orthonormal subset of L2[0,T]. Then, we have for A € C4 and a non-zero real
q

(22) B [F| X (€)

= lim [)\"/2 / exp{l;)l Z(ej, x)2}F(a¢ — o+ ﬁ)dm(m)]
n—ee Col0,T] 2 =1

and

—

(23)  E*MaF|Xi](€)
= nh_)rgo [)\2/2 /CO[QT] exp{ z:: €, T } T — Tk +§_;c)dm(x)]

for a.e. Ee R, where {\,}22, is a sequence in Cy with Ay — —iq as n — 00.
In particular, we have for v > 0 and a.e. £ € R¥

E[F(y)|Xk(v))(&)

= lim [fy“"/ exp{
nreo Co[0,T]

Let

z::e], } :c—xk-i—gk)dm(x)].

(24) T:0=tg<ti1 < - <t =T

be a partition of [0,T] and let z be in Cy[0,T]. Define the polygonal function
[z] of z on [0, T] by

(25) [l ZI@J l,mu[ )+ B ) — (i)

tj —tj_1

for t € [0,T]. For £ = (€1,...,&) € R* let [5—] be the polygonal function of £
on [0,T] given by (25) with replacing z(t;) by &; for j = 0,1,...,k (& = 0).
Let X, : Co[0,T) — R* be the random variable given by

(26) XAz) = (z(t1),...,x(tg)).

For v € L3[0,T], define the sectional average ¥ of v by

1 t
o(t) = ——— v(t*)dt*
7 J=1 Jt5 1

on the interval (t;-1,t;] for j = 1,...,k and ©(0) = 0. Further, let o =
WI@J L) for i =1,...,k and Xk(:c) = ((1,2),...,(ak,x)) for z €
Co[0,T]. Then, from [8, p.299], we have z; = [z] and for an integrable function
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F on Cy[0,T], we also have

(27) E[F|X,(€)

i

o €k — &K1
st = )
= E[F(z - 2]+ [&])]
by Lemma 1. Moreover, since Prv = ¥, we also have
weg(v) =v—Prv=v-170

for v € Ly[0,T]. With replacing X, zx, & and w(v) by X,, [z], [€] and
v — 7, respectively, we have all the lemmas, theorems and corollaries of this and
previous sections. Note that, in this case, (14) is rewritten by

7E) = ((vr,[8),..., )
k k
= (Zﬁl(tj) —&-1) Zﬁ (t)(&5 — &- 1))

In particular, from Corollaries 13 and 14 with K, = 1 and F, = 0, (22) and
(23) are rewritten by

(28)  E*FIX)(E)

= gm[er ] e 2 b (e - ) + € dm(o)]

and
(29)  E*™e[F|X.](E)

= Jm e [ a2 5 07 Fle )+ @it

=1

respectively, for a.e. £ € R*, where F is given by (7).

4. Change of scale formula for Wiener integrals

Throughout this section, let {e;, ez, ...} be any complete orthonormal set in
Ly[0,T).

Let F be defined on Cy[0,T). Suppose that E[F?*] exists for each A > 0 and
it has the analytic extension J5(F) on C4. Then we call J;(F') the analytic
Wiener integral of F' over Cy[0, T] with parameter A and write

ES"NF) = JX(F).
Moreover, if for a non-zero real g, E****[F] has a limit as A approaches to —iq

through C,, then it is called the analytic Feynman integral of F' over Cy|0, T
with parameter ¢ and denoted by

E°naF) = lim A [F).
——1iq
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Lemma 17. Let F be given by (7) and X be given by (1). Then, we have for
a non-zero real q

(30) priipl= [ ep{ ol o)

L2[0,7)
and
anfq §) = expl i(v, & L v)|? Ydo
o) EE@ = [ e 6) + g o)l aoto

for a.e. £ € R¥, where & is given by (4).

Proof. It is not difficult to show that we have for A € C4

(52) proirl= [ ew{ -5 }ar)
L2(0,T) 2A

and hence (30) follows from the dominated convergence theorem. Now, we
prove for A € C,

(33) B FIXE) = /

.1
exp{it0,6) - g5 w1 o)
L,[0,T)

for a.e. £ € R*. To prove (33), let A > 0. By Fubini’s theorem and (12), we
have

E[F(\(z — ax) + &)

/ exp{i(v, &)} exp{i)\_l/2 (wi(v), z)}dm(z)do(v)
L2[0,T] Co[0,T]

_/Lz[O,T] exp{i(v, &) — % I]wk(v)ng}dg(v)

and hence we have (33) by Morera’s theorem. (31) follows from (33) by the
dominated convergence theorem. O

i

Il

Remark 2. Let X, be given by {26). If we replace X; by X, we obtain both
(31) and (33) with replacing &, wg(v) by [£], v — , respectively.

For a complex-valued function f on R, let

o N
IRGE =fgggnwfﬂkkf(£>exp{—ﬂ;5?}d£

with E = (£1,...,&) whenever the limit exists. Using the notation, we have the
following lemma which expresses the analytic Feynman integral of the function
in § as an ordinary integral of the conditional analytic Feynman integral of the
function.
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Lemma 18. Let F' be given by (7) and X be given by (1). Then, we have for
AeCy

(34) (%)m PR exp{——Z@}dﬁ Eomos ()

and for a non-zero real q

(35) (537)/ [ R @ e {qZZ{"}dﬁ Eeh{F],

where € = (61,5 6k)-

Proof. By (33) and Fubini’s theorem, we have for A € C
\\ K72
(2_) Eanw,\ F]Xk] {—— Zﬁj }dE
A\ 2 / / { a1 A
= [ =—= exp{ i(v, &) — —|lv — Pev]l3 - = 62}
(%) o o 941080 = g5l =Pl -3 36

’U

A /2/ / { )
= — expq i v, Z; Il — (1Pl
(w oy Jur PV 2 2006 = 5 10l — Puol]

j=
k

=3¢ }dgda(v

j=1

1< 1<
= expl — — v — vZ
/ . p{ > 0.2 — vl + N )}

J=1

le

— [Eanwx [F]

by (13) and (32). To prove (35), let A > 0. By (31) and Fubini’s theorem, we

have
<—>/{< ) Ee)s
- (-2%)'“/2 Lom /Rkexp{zij 7o 018 - ;i;(v,znz
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qu Z £ }dgda

k/2 k/2 k
q 2rA ) / { A 2
(27m) (1 —igA L3[0,T) P 2(1 - iqA) ;( 2
k
1
2mu ol - 5 X_j }

where the last equality follows from (13). Letting A — oo, we have (35) from
(30) and the dominated convergence theorem. O

Remark 3. We have another method to prove (34). Indeed, by the definition
of conditional expectation, we have for A > 0

EIFY = [C [OT]E[FMX,?](X@(:c»dm(x)

Q) Lo 1)

by the change of variable theorem, since (a;,-)’s are mean zero Gaussian with
variance 1. By (32) and (33), each side of the equation has the analytic exten-
sion on C;. By the uniqueness of analytic extension, we have (34) for A € C,.

Theorem 19. Let F' be given by (7). Further, let q be a non-zero real number
and {A,}32, be a sequence in Cy with A, — —iq as n — oco. Then, we have

(36) B F

A\ 2 1-A g
= lim [)\"/2<—> / exp{—— (e<,w)2}
n—oo 27 Co[0,T} 2 Z 7

J=1

/ exp{ %i } (x—xk + Ek)dgdm(x)]

for xe Cy and
(37) E*™[F]

/2 An K/ 1-A i )2
= lim lim [A" ( ) / exp{ L €, T }
A—o00 n—o0 2w Co[0,T7] 2 ( I

j=1

LY selp £, )dEd <>]

where 5= (51,--'>§k)-
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Proof. By Corollary 16 and (34), we have

Ea'nw,\ [F] —

A\ F2
?> Emwmeﬂ {——}3@}@

A\ /2 [ [ 1-)

— lim /\"/2/ exp{— (e;,z)?
27 > Rk [0 Co[0,T7 2 Z J )

=1

(
(
-2 égﬁ}F(x ~ o+ Eim(a) || €

By an application of the proof of Lemma 7, we also have

Je

xF(x — zp + gk)dm(:c) dé

- [oof -2 5e)

e 228 S o (o) - énwkw)u%}da(w

Jj=1

_Redn, _1[ )
foon{-552 28} [ onl g [rmon

- Lo )] - 5 2 3l o )"l

*) Re A & 5] .=
< ol | exp{—T;ej}dem,

k

1- A A
)\"/2/ exp{— ej,z)? — = 52}
CO[(),T] 2 Z( ] ) 2 Z 3

j=1 j=1

/L oy Pl E)

3

IA

where (x) follows from Bessel’s inequality. Now, (36) follows from the domi-
nated convergence theorem and Fubini’s theorem.
It remains to prove (37). Again, by Corollary 16 and (35), we have

Eenfop] = (%ﬂ)k/2ZEanﬂl[lek](g>eXp{qu;klé?}dg
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A\ 72 A 1
= 1 i n/2{ An Y A
Ao Jux [nlinéo[’\n (%) eXp{ (2 +2A>

Jj=1
- & - -
x/ exp{ A Z(ej,w)z}F(ac — T +§k)dm(ac)”d
Co{0,T} 2 o
A\ 1- A, o
= lim lim [/\2/2(—71) / exp{ & (e-,x)2}
A—oon=o0 2 Col0,T] 2 ; ’

Moy LY ghe F ¢ )dEd
x/ﬂakexp{—<7+ﬁ);€j} (¢ — xp + &)dE m(fﬂ)}

by the dominated convergence theorem and Fubini’s theorem, which completes
the proof. O

If we take A = v=2 for v > 0, then we have the following theorem from
Theorem 19.

Theorem 20. Under the assumptions given as in Theorem 19, we have

/ F(yz)dm(z)
Col0,T}

1 k/2 72 -1 2
= lim 7_"( ) / exp{ €, T }
"—‘w[ 2my? Col0,T] 2y2 Z( 5%)

j=1

1< -
X /Rk exp{—ﬁ ;sz}F(ac — Ik +£k)d£dm(x)]

for v > 0.

Lemma 21 ({7, Theorem 10}). Let F be given by (7) and X, be given by (26).
Then, for A € C4 and a non-zero real q, we have

(38) E*mr[F]
k A 1/2 A k (5'_&;1)2
- Uagtim) Lee{aX %00
x B4 [F| X, )(€)dE
and
(39) Eanf‘l[F]
k 1/2—— ok ,
= 1 gi N~ (& — &)
B [Em] /mzkexP{E;_tjtth}

x E*™Ma(F|X] (€)dE,
where E: (&1,..-, &) and to = & = 0.
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Remark 4. Comparing (34), (35) with (38), (39), respectively, we note that they
are different in the expressions of E*"¥*[F| and E%"f¢[F)]. Indeed, the random
variables X and X, do not have the same distribution scrutinizing their prob-
ability densities. We also emphasize that (27) does not mean E[F|Xz](€).

Let X be given by (26). Then, for A > 0, the probability density of X7 is
[H;?:l m]” 2exp{—% Z;“ 1 %i} By the same method used in
the proof of Theorem 19, we have the following theorem from (28), (29), (38)
and (39).

Theorem 22. Let a partition of [0,T] be given by (24). Under the assumptions
given as in Theorem 19, we have
’ Eenws [F]

12 k 1/2 1—2X n
= lim (A" / ex {——— e-,xz}
"—’°°[ [H m(t; —ta 1)] Co[0,T] Pl j;( )

A (é.] é; 1) F
X /Rk exp{——§ ; _tTtJT—}F(m — ]+ [ﬂ)d&dm(m)]
forxe Cy and

Eanfq [F]

';:1»

A— o0 n—oo

A 1/2 1= A &
= lim lim [/\"/2[ ——n——} / exp{ "E (€5,
sop 2m(ty — i) Col0,T] = !

x)z}/Rkexp{J_z<t ~ &) AZ@}F(m— ] + 4]

ti1
dfdm@)] ,

where € = (£1,...,&) and to = & = 0.

If we take A =~~2 for v > 0, then we have the following theorem from the
first equation in Theorem 22.

Theorem 23. Under the assumptions given as in Theorem 22, we hove

/ F(yz)dm(z)
Co[0,T]
k 1 1/2 n
= lim 7’"[ ——————] / exp{ €, }
”“*°°[ I:I 2my3(tj — tj-1) Co[0,T7] XZ: !

x/Rk exp{ 5 zzgj—tj;ﬂ—}F(x (] + [£])déedm( x)]
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for v > 0.

Remark 5. Let ¢ = 1in [12, Theorem 3.10]. From this theorem, for F' € S and
A € Cy4, we have

¥ [F] = lim [)\"/2 /C o exp{l_;l zn:(ej,x)Q}F(x)dm(m)]

j=1

so that we have another type of the change of scale formula([5, Theorem 2] and
[12, Corollary 4.5]);

/ F(yz)dm(z)
Co[0,T]

2 _ 1 n
= lim ['y_”/ exp{v E e~,x)2}F(x)dm(x)]
N—00 Col0,T] 2,)/2 JII( J

for v > 0.

References

1] R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954),
623-627.

[2] R. H. Cameron and W. T. Martin, The behavior of measure and measurability under
change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137.

[3] R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman in-

tegrable functionals, Lecture Notes in Math. 798, Springer-Verlag, New York (1980),
18-67.

(4]

, Relationships between the Wiener integral and the analytic Feynman integral,
Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 117-133.
, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2)
Suppl. 17 (1987), 105-115.
[6] K. S. Chang, G. W. Johnson, and D. L. Skoug, Functions in the Fresnel class, Proc.
Amer. Math. Soc. 100 (1987), no. 2, 309-318.
[7] D. M. Chung and D. L. Skoug, Conditional analytic Feynman integrals and a related
Schrédinger integral equation, SIAM J. Math. Anal. 20 (1989), no. 4, 950-965.
(8] C. Park and D. L. Skoug, Conditional Wiener integrals II, Pacific J. Math. 167 (1995),
no. 2, 293-312.
{9] , A simple formula for conditional Wiener integrals with applications, Pacific J.
Math. 135 (1988), no. 2, 381-394.
[10] I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract
Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247.
, A change of scale formula for Wiener integrals on abstract Wiener spaces II,
J. Korean Math. Soc. 31 (1994), no. 1, 115-129.
[12] I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener
integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389.
[13] I. Yoo and G. J. Yoon, Change of scale formulas for Yeh-Wiener integrals, Commun.
Korean Math. Soc. 6 (1991), no. 1, 19-26.

(5]

11)




1050 1. YOO, K. S. CHANG, D. H. CHO, B. 8. KIM, AND T. S. SONG

IL Yoo

DEPARTMENT OF MATHEMATICS
YonsgEr UNIVERSITY

WonNJu 220-710, KOREA

E-mail address: iyoo@yonsei.ac.kr

KuN S00 CHANG

DEPARTMENT OF MATHEMATICS

YONSEI UNIVERSITY

SEOUL 120-749, KOREA

E-mail address: kunchang@yonsei.ac.kr

DonGg Hyun CHO

DEPARTMENT OF MATHEMATICS
KYONGGI UNIVERSITY

SUWON 443-760, KOREA

E-mail address: j94385@kyonggi.ac.kr

Byoung Soo Kim

SCHOOL OF LIBERAL ARTS

SEOUL NATIONAL UNIVERSITY OF TECHNOLOGY
SEOUL 139-743, KOREA

E-mail address: mathkbs@snut.ac.kr

TEUK SEOB SONG

DEPARTMENT OF COMPUTER ENGINEERING
MOKWON UNIVERSITY

DAEJEON 302-729, KOREA

E-mail address: teukseob@gmail.com



