• Title/Summary/Keyword: ${\delta}-doping$

Search Result 91, Processing Time 0.024 seconds

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping (Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

A Study on Sintering Behavior and Conductivity for NiO-doped BaZr0.85Y0.15O3-δ (NiO가 도핑된 BaZr0.85Y0.15O3-δ의 소결거동 및 전도도에 관한 연구)

  • Park, Young-Soo;Kim, Jin-Ho;Kim, Hae-Kyoung;Hwang, Kwang-Tak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.670-677
    • /
    • 2012
  • Perovskite-type oxides such as doped barium zirconate ($BaZrO_3$) show high proton conductivity and chemical stability when they are exposed to hydrogen and water vapour containing atmospheres, thus it can be applicable to the hydrogen separation and the fuel cell electrolyte membranes. However the high temperature ($1700-1800^{\circ}C$) and long sintering times (24h) are generally required to prepare the fully densified $BaZrO_3$ pellets. These sintering conditions lead to the limitation of the grain size growth and the degradation of conductivity due to the acceleration of BaO evaporation at $1200^{\circ}C$. Here we demonstrate NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ with lower calcination and sintering temperature, less experimental procedure and lower process cost than the conventional mixing method. The stoichiometry of $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was optimized by the control of excess amount of Ba (5mol%) to minimized BaO evaporation. We found that the crystal size of NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was increased with increase of calcination temperature from XRD analysis. NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ powder was calcined at $1000^{\circ}C$ for 12h when its showed the highest conductivity of $3.3{\times}10^{-2}s/cm$.

Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds

  • Yen, Pham Duc Huyen;Dung, Nguyen Thi;Thanh, Tran Dang;Yu, Seong-Cho
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1280-1288
    • /
    • 2018
  • In this work, we pointed out that Sr substitution for Ca leads to modify the magnetic and magnetocaloric properties of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds. Analyzing temperature dependence of magnetization, M(T), proves that the Curie temperature ($T_C$) increased with increasing Sr content (x); $T_C$ value is found to be 130-260 K for x = 0.0-0.3, respectively. Using the phenomenological model and M(T,H) data measured at several applied magnetic field, the magnetocaloric effect of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds has been investigated through their temperature and magnetic field dependences of magnetic entropy change ${\Delta}S_m$(T,H) and the change of the specific heat change ${\Delta}C_P$(T,H). Under an applied magnetic field change of 10 kOe, the maximum value of $-{\Delta}S_m$ is found to be about $3J/kg{\cdot}K$, and the maximum and minimum values of ${\Delta}C_P$(T) calculated to be about ${\pm}60J/kg{\cdot}K$ for x = 0.3 sample. Additionally, the critical behaviors of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds around their $T_C$ have been also analyzed. Results suggested a coexistence of the ferromagnetic short- and long-range interactions in samples. Moreover, Sr-doping favors establishing the short-range interactions.

Thermoelectric Properties of Co1-xNbxSb3 Prepared by Induction Melting (유도용해법으로 제조된 Co1-xNbxSb3의 열전특성)

  • Park J.B.;You S.W.;Cho K.W.;Jang K.W.;Lee J.I.;Ur S.C.;Kim I.H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.89-92
    • /
    • 2005
  • The induction melting was employed to prepare Nb-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by induction melting and subsequent annealing at $400^{\circ}C$ for 2 hrs in vacuum. The positive signs of Seebeck coefficients for all the specimens revealed that Nb atoms acted as p-type dopants by substituting Co atoms. Electrical conductivity decreased and then increased with increasing temperature, indicating mixed conduction behavior. Electrical conductivity increased by Nb doping, and it was saturated at high temperature. Maximum value of the thermoelectric power factor was shifted to higher temperature with increasing the amount of Nb doping, mainly originated from the high Seebeck coefficient around mixed conduction temperature and high electrical conductivity.

Study on Electrical Characteristics of Ideal Double-Gate Bulk FinFETs (이상적인 이중-게이트 벌크 FinFET의 전기적 특성고찰)

  • Choi, Byung-Kil;Han, Kyoung-Rok;Park, Ki-Heung;Kim, Young-Min;Lee, Jong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.1-7
    • /
    • 2006
  • 3-dimensional(3-D) simulations of ideal double-gate bulk FinFET were performed extensively and the electrical characteristics. were analyzed. In 3-D device simulation, we changed gate length($L_g$), height($H_g$), and channel doping concentration($N_b$) to see the behaviors of the threshold voltage($V_{th}$), DIBL(drain induced barrier lowering), and SS(subthreshold swing) with source/drain junction depth($X_{jSDE}$). When the $H_g$ is changed from 30 nm to 45nm, the variation gives a little change in $V_{th}$(less than 20 mV). The DIBL and SS were degraded rapidly as the $X_{jSDE}$ is deeper than $H_g$ at low fin body doping($1{\times}10^{16}cm^{-3}{\sim}1{\times}10^{17}cm^{-3}$). By adopting local doping at ${\sim}10nm$ under the $H_g$, the degradation could be suppressed significantly. The local doping also alleviated $V_{th}$ lowering by the shallower $X_{jSDE}\;than\;H_g$ at low fin body doping.

Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC) (중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

Reliability Characteristics of La-doped High-k/Metal Gate nMOSFETs

  • Kang, C.Y.;Choi, R.;Lee, B.H.;Jammy, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.166-173
    • /
    • 2009
  • The reliability of hafnium oxide gate dielectrics incorporating lanthanum (La) is investigated. nMOSFETs with metal/La-doped high-k dielectric stack show lower $V_{th}$ and $I_{gate}$, which is attributed to the dipole formation at the high-k/$SiO_2$ interface. The reliability results well correlate with the dipole model. Due to lower trapping efficiency, the La-doping of the high-k gate stacks can provide better PBTI immunity, as well as lower charge trapping compared to the control HfSiO stacks. While the devices with La show better immunity to positive bias temperature instability (PBTI) under normal operating conditions, the threshold voltage shift (${\Delta}V_{th}$) at high field PBTI is significant. The results of a transconductance shift (${\Delta}G_m$) that traps are easily generated during high field stress because the La weakens atomic bonding in the interface layer.

Fabrication of Fe-doped LaGaO3 Perovskite Mixed Conductor and Improvement of Oxygen Permeability by Screen Printing Coating (Fe가 Doping 된 LaGaO3 폐롭스카이트 혼합 전도체의 제조 및 코팅에 따른 산소투과 성능 향상)

  • Lim, Kyung Tae;Cho, Tong Lae;Lee, Kee Sung;Woo, Sang Kuk;Park, Kee Bae;Kim, Jong Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • 고상 반응법을 이용하여 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-{\delta}}$ 분말을 합성하고 혼합전도체 분리막을 소결하여 제조하였다. 제조된 분리막은 $LaGaO_3$에 일치하는 폐롭스카이트 결정구조를 나타내었으며 95% 이상의 높은 상대밀도를 나타내었다. 스크린 프린팅 방법으로 $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ 후막을 disk의 양 표면에 코팅하였으며 코팅 막은 비교적 치밀한 미세구조를 나타내었다. 코팅되지 않은 분리막과 코팅된 분리막의 산소투과 성능을 비교 실험한 결과 $850^{\circ}C$에서 동일한 두께의 코팅된 분리막의 정상상태 산소 투과 유속이 $0.7{m{\ell}}/min.cm^2$ 정도로 코팅되지 않은 분리막에 비해 약 2~3배로 높게 나타났다.

  • PDF

Study of Electrical Conductivity of BaZr0.85-xPdxY0.15O3-δ/ Carbonates Composite Materials (BaZr0.85-xPdxY0.15O3-δ/ Carbonates 복합전도체 전기적 특성 연구)

  • Park, Ka-Young;Baek, Seung-Seok;Park, Jun-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.283-288
    • /
    • 2014
  • PdO-doped $BaZr_{0.85}Y_{0.15}O_{3-\delta}$ (BZPY) proton conductors have been proposed as applicable for intermediate temperature electrolytes for protonic ceramic fuel cells (PCFCs) because the PdO doping is effective for improving the proton conductivity of $BaZr_{0.85}Y_{0.15}O_{3-\delta}$ (BZY) with high affinity for hydrogen. In order to further improve the conductivity of BZPY, two-phase composite electrolytes consisting of a BZPY and molten carbonate were designed. Dense BZPY-based composite electrolytes were fabricated after sintering at $670^{\circ}C$ for 4 h, since molten carbonates fill the grain boundary of the porous BZPY matrix. Furthermore, BZPY/$(Li-0.5Na)_2CO_3$ composites show a significantly enhanced protonic conductivity at intermediate temperatures. This may be because easy proton transport is possible through the interface of the carbonate and oxide phase.

Thermoelectric Properties of Co1-xFexSb3 Prepared by Encapsulated Induction Melting (밀폐유도용해로 제조된 Co1-xFexSb3의 열전특성)

  • Park, Kwan-Ho;Koh, Dong-Wook;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.351-354
    • /
    • 2006
  • [ $Co_{1-x}Fe_xSb_3$ ] skutterudites were synthesized by encapsulated induction melting and their thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the subsequent heat treatment at 773 K for 24 hours in vacuum. However, ${\delta}-CoSb_3$ was decomposed to FeSb2 and Sb when $x{\leq}0.3$, which means that the solubility limit of Fe to Co is x<0.3. The positive signs of Seebeck coefficients for all Fe-doped specimens revealed that Fe atoms acted as p-type dopants by substituting Co atoms. Thermoelectric properties were remarkably enhanced by Fe doping and optimum composition was found to be $Co_{0.7}Fe_{0.3}Sb_3$ in this study.