Study on Electrical Characteristics of Ideal Double-Gate Bulk FinFETs

이상적인 이중-게이트 벌크 FinFET의 전기적 특성고찰

  • Choi, Byung-Kil (School of Electrical Engineering and Computer Science, Kyungpook University) ;
  • Han, Kyoung-Rok (School of Electrical Engineering and Computer Science, Kyungpook University) ;
  • Park, Ki-Heung (School of Electrical Engineering and Computer Science, Kyungpook University) ;
  • Kim, Young-Min (School of Electrical Engineering and Computer Science, Kyungpook University) ;
  • Lee, Jong-Ho (School of Electrical Engineering and Computer Science, Kyungpook University)
  • 최병길 (경북대학교 전자공학과) ;
  • 한경록 (경북대학교 전자공학과) ;
  • 박기흥 (경북대학교 전자공학과) ;
  • 김영민 (경북대학교 전자공학과) ;
  • 이종호 (경북대학교 전자전기컴퓨터학부)
  • Published : 2006.11.25

Abstract

3-dimensional(3-D) simulations of ideal double-gate bulk FinFET were performed extensively and the electrical characteristics. were analyzed. In 3-D device simulation, we changed gate length($L_g$), height($H_g$), and channel doping concentration($N_b$) to see the behaviors of the threshold voltage($V_{th}$), DIBL(drain induced barrier lowering), and SS(subthreshold swing) with source/drain junction depth($X_{jSDE}$). When the $H_g$ is changed from 30 nm to 45nm, the variation gives a little change in $V_{th}$(less than 20 mV). The DIBL and SS were degraded rapidly as the $X_{jSDE}$ is deeper than $H_g$ at low fin body doping($1{\times}10^{16}cm^{-3}{\sim}1{\times}10^{17}cm^{-3}$). By adopting local doping at ${\sim}10nm$ under the $H_g$, the degradation could be suppressed significantly. The local doping also alleviated $V_{th}$ lowering by the shallower $X_{jSDE}\;than\;H_g$ at low fin body doping.

이상적인(ideal) 이중-게이트(double-gate) 벌크(bulk) FinFET의 3차원(3-D) 시뮬레이션을 수행하여 전기적 특성들을 분석하였다. 3차원 시뮬레이터를 이용하여, 게이트 길이($L_g$)와 높이($H_g$), 핀 바디(fin body)의 도핑농도($N_b$)를 변화시키면서 소스/드레인 접합 깊이($X_{jSDE}$)에 따른 문턱전압($V_{th}$), 문턱전압 변화량(${\Delta}V_{th}$), DIBL(drain induced barrier lowering), SS(subthreshold swing)의 특성들을 살펴보았다. 게이트 높이가 35 nm인 소자에서 소스/드레인 접합 깊이(25 nm, 35 nm, 45 nm) 변화에 따라, 각각의 문턱전압을 기준으로 게이트 높이가 $30nm{\sim}45nm$로 변화 될 때, 문턱전압변화량은 20 mV 이하로 그 변화량이 매우 적음을 알 수 있었다. 낮은 핀 바디 도핑농도($1{\times}10^{16}cm^{-3}{\sim}1{\times}10^{17}cm^{-3}$)에서, 소스/드레인 접합 깊이가 게이트전극보다 깊어질수록 DIBL과 SS는 급격히 나빠지는 것을 볼 수 있었고. 이러한 특성저하들은 $H_g$ 아래의 ${\sim}10nm$ 위치에 국소(local) 도핑을 함으로써 개선시킬 수 있었다. 또한 local 도핑으로 소스/드레인 접합 깊이가 얕아질수록 문턱전압이 떨어지는 것을 개선시킬 수 있었다.

Keywords

References

  1. International Technology Roadmap for Semiconductors 2005 (http://public.itrs.net)
  2. Yang-Kyu Choi, Kazuya Asano, Nick Lindert, Vivek Subramanian, Tsu-Jae King, Jeffrey Bokor and Chenming Hu, 'Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,' in IEDM Tech. Dig., Dec. 1999, pp. 919-921 https://doi.org/10.1109/IEDM.1999.824298
  3. Gulzar A. Kathawala, Brain Winstead and Umberto Ravaidi, 'Monte Carlo simulation of double-gate MOSFETs,' IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2467-2473, Dec. 2003 https://doi.org/10.1109/TED.2003.819699
  4. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios and R. Chau, 'Tri-gate fully-depleted CMOS transistor: fabrication, design and layout,' in Symp. VLSI Tech. Dig., June 2003, pp. 133-134
  5. Jakub Kedzierski, Meikei Ieong, Edward Nowak, Thomas S. Kanarsky, Ying Zhang, Ronnen Roy, Diane Boyd, David Fried and H.-S. Philip Wong, 'Extension and source/drain design for high-performance FinFET devices,' IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952-958, Apr. 2003 https://doi.org/10.1109/TED.2003.811412
  6. E. J. Nowak, T. Ludwig, I. Aller, J. Kedzierski, M. Ieong, B. Rainey, M. Breitwisch, V. Gernhoefer, J. Keinert and D. M. Fried, 'Scaling beyond the 65 nm node with FinFET-DGCMOS,' IEEE Proc. Custom Integrated Circuit, pp. 339-342, Sep. 2003 https://doi.org/10.1109/CICC.2003.1249415
  7. Xuejue Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamotom, Leland Chang, Jakub Kedzierski, Erik Anderson, Hideki Takeuchi, Yang-Kyu Choi, Kazuya Asano, Vivek Subramanian, Tsu-Jae King and Chenming Hu, 'Sub-50 nm p-channel FinFET,' IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 880-886, May 2003 https://doi.org/10.1109/16.918235
  8. Tai-su Park, Euijoon Yoon, Jong-Ho Lee, 'A 40nm body-tied FinFET (OMEGA MOSFET) using bulk Si wafer,' Physica E, vol. 19, pp. 612, 2003 https://doi.org/10.1016/S1386-9477(03)00285-6
  9. T. Park, S. Choi, D. H. Lee, J. R. Yoo, B. C. Lee, J. Y. Kim, C. G. Lee, K. K. Chi, S. H. Hong, S. J. Hyun, Y. G. Shin, J. N. Han, I. S. Park, U I. Chung, J. T. Moon, E. Yoon, and J. H. Lee, 'Fabrication of body-tied FinFETs (Omega MOSFETs) using bulk Si wafers,' in Symp. on VLSI Tech. Dig., 2003, pp. 135-136
  10. T. Park, H. J. Choe, S. Y. Han, S.-M. Jung, B. Y. Nam, O. I. Kwon, J. N. Han, H. S. Kang, M. C. Chae, G. S. Yeo, S. W. Lee, D. Y. Lee, D. Park, K. Kim, E. Yoon, and J. H. Lee, 'Static noise margin of the full DG-CMOS SRAM cell using bulk FinFETs (Omega MOSFETs),' in IEDM Tech. Dig., Dec. 2003, pp. 27-30 https://doi.org/10.1109/IEDM.2003.1269158
  11. SILVACO International, ATLAS User's Manual
  12. Kwang-Ho Back, Kyung-Rok Han and Jong-Ho Lee, 'Corner effect in body-tied double/triple-gate MOSFETs implemented on bulk Si wafers,' in Si Nanoelectronics Tech. Dig., 2004, pp. 47-48
  13. J. G. Fossum, J. -W. Yang and V. P. Trivedi, 'Suppression of corner effect in triple-gate MOSFETs,' IEEE Electron Device Lett, vol. 24, no. 12, pp. 745-747, Dec. 2003 https://doi.org/10.1109/LED.2003.820624