• 제목/요약/키워드: ${\beta}{\beta}{\alpha}$ motif

검색결과 35건 처리시간 0.026초

The Solution Structure of 18 residue YH motif Peptide within the Second fas-1 domain of ${\beta}ig-h3$

  • Han, Kyung-Doo;Son, Woo-Sung;Kim, Won-Je;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제11권1호
    • /
    • pp.24-29
    • /
    • 2007
  • [ ${\beta}ig-h3$ ] is an extracellular matrix protein that mediates cell adhesion through interaction with integrins. The 18 residue YH motifs within each fas-1 domain are known to be responsible for the interaction with the ${\alpha}_v{\beta}_5$ integrin, and the synthetic YH motif peptides are known to inhibit endothelial tube formation and reduces the number of blood vessels, and so expected to be an effective inhibitor of angiogenesis. In this study, we solved the 3D structure of the 18 residue YH motif peptide (EALRDLLNNHILKSAMCA; D2 peptide) within the second fas-1 domain of ${\beta}ig-h3$ using NMR. The Peptide has ${\alpha}-helix$ structure at the C terminal region but the N terminal region is flexible. The present structural information may be helpful for developing more effective peptide drug candidate for the treatment of diseases dependent on angiogenesis.

  • PDF

Backbone 1H, 15N, and 13C resonance assignments and secondary structure prediction of SAV2228 (translation initiation factor-1) from Staphylococcus aureus

  • Kim, Do-Hee;Jang, Sun-Bok;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제16권2호
    • /
    • pp.162-171
    • /
    • 2012
  • SAV2228 has an OB (Oligomer-Binding)-motif which is frequently used for nucleic acid recognition. To characterize the activity of translation initiation factor-1 (IF-1) from Staphylococcus aureus, SAV2228 was expressed and purified in Escherichia coli. We acquired 3D NMR spectra showing well dispersed and homogeneous signals which allow us to assign 94.4% of all $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$ and $^{13}CO$ resonances. We could predict a secondary structure of SAV2228 using TALOS and CSI from NMR data. SAV2228 was consisted of one ${\alpha}$-helix and five ${\beta}$-sheets. The predicted secondary structure, ${\beta}-{\beta}-{\beta}-{\alpha}-{\beta}-{\beta}$, was similar to other bacterial IF-1, but it was not completely same to the eukaryotic one. Assigned NMR peaks and secondary structre prediction can be used for the study on interaction with nucleic acid in the future.

Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.355-362
    • /
    • 2017
  • The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

Solution Structure of a GSK 3$\beta$ Binding Motif, A $AXIN^{pep}$

  • Kim, Yong-Chul;Jung, JIn-Won;Park, Hee-Yong;Kim, Hyun-Yi;Lee, Weon-tae
    • 한국자기공명학회논문지
    • /
    • 제9권1호
    • /
    • pp.38-47
    • /
    • 2005
  • Axin is a scaffold protein of the APC/axin/GSK complex, binding to all of the other signalling components. Axin interacts with Glycogen synthase kinase 3$\beta$ (GSK 3$\beta$) and functions as a negative regulator of Wnt signalling pathways. To determine the solution structure of the GSK3$\beta$ binding regions of the axin, we initiated NMR study of axin fragment comprising residues 3$Val^{388} - Arg^{401}$using circular dichroism (CD) and two-dimensional NMR spectroscopy. The CD spectra of 3$axin^{pep}$ in the presence of 30% TFE displayed a standard 3$\alpha$-helical conformation, exhibiting the bound structure of 3$axin^{pep}$ to GSK3$\bata$. On the basis of experimental restraints including $NOE_s$, and $^3J_{HN\alpha} $ coupling constants, the solution conformation of $axin^{pep}$ was determined with program CNS. The 20 lowest energy structures were selected out of 50 final simulated-annealing structures in both water and TFE environment, respectively. The $RMSD_s$ for the 20 structures in TFE solution were 0.086 nm for backbone atoms and 0.195 nm for all heavy atoms, respectively. The Ramachandran plot indicates that the $\varphi$, $\psi$ angles of the 20 final structures is properly distributed in energetically acceptable regions. $Axin^pep$ in aqueous solutions consists of a stable $\alpha$-helix spanning residues form $Glu^{391}$ to $Val^{391} $, which is an interacting motif with GSK3$\beta$.

  • PDF

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD)

  • Yang, Changwon;Kim, Eunae;Pak, Youngshang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1713-1719
    • /
    • 2014
  • 1FSD is a 28-residue designed protein with a ${\beta}{\beta}{\alpha}$ motif. Since this protein displays most essential features of protein structures in such a small size, this model protein can be an outstanding system for evaluating the balance in the propensity of the secondary structures and the quality of all-atom protein force fields. Particularly, this protein would be difficult to fold to its correct native structure without establishing proper balances between the secondary structure elements in all-atom energy functions. In this work, a series of the recently optimized five amber protein force fields [$ff03^*$, $f99sb^*$-ildn, ff99sb-${\phi}^{\prime}$-ildn, ff99sb-nmr1-ildn, ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn] were investigated for the simulations of 1FSD using a conventional molecular dynamics (MD) and a biased-exchange meta-dynamics (BEMD) methods. Among those tested force fields, we found that ff99sb-nmr1-ildn and ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn are promising in that both force fields can locate the native state of 1FSD with a high accuracy (backbone rmsd ${\leq}1.7{\AA}$) in the global free energy minimum basin with a reasonable energetics conforming to a previous circular dichroism (CD) experiment. Furthermore, both force fields led to a common set of two distinct folding pathways with a heterogeneous nature of the transition state to the folding. We anticipate that these force fields are reasonably well balanced, thereby transferable to many other protein folds.

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Michael addition acceptor 그룹을 가지고 있는 phytochemicals의 toll-like receptor 신호전달체계 조절을 통한 항염증 효과 (Anti-inflammatory Effects of Phytochemicals Having Michael Addition Acceptors by the Modulation of Toll-like Receptor Signaling Pathways)

  • 윤형선
    • 한국식품과학회지
    • /
    • 제41권5호
    • /
    • pp.477-482
    • /
    • 2009
  • TLRs는 여러 병원균들이 가지고 있는 PAMPs를 인식해서, 선천성 면역 반응을 유도하는 중요한 역할을 한다. TLR4의 이합체 형성은 신호전달 체계의 활성화와 뒤이어 발생하는 선천성 면역 반응을 유도하기 위해서 최초로 일어나는 반응으로 알려져 있다. 우리가 먹는 식품 중에는 항염증 효과가 있다고 널리 알려져 있는 phytochemicals이 포함되어 있다. 특히 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde는 Michael addition 반응에 의해서 LPS에 의해서 유도된 TLR4의 이합체 형성을 억제시켜, 전사요소 NF-${\kappa}B$와 IRF3 활성화 및 그것들에 의해서 조절되는 타깃 유전자들을 억제시킨다. 이러한 결과는 ${\alpha},{\beta}$-unsaturated carbonyl group을 가지고 있는 curcumin, 6-shogaol, 그리고 cinnamaldehyde의 항염증 효능에 대한 새로운 기전을 설명해 주는 것이라 할 수 있겠다.

Exploration of Essential Structure of Malloapelta B for the Inhibitory Activity Against TNF Induced $NF-{\kappa}B$ Activation

  • Luu, Chinh Van;Chau, Minh Van;Lee, Jung-Joon;Jung, Sang-Hun
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.840-844
    • /
    • 2006
  • For the exploration of pharmacophoric moiety of malloapelta B (1) possessing the inhibitory activity of $NF-{\kappa}B$ activation, structural variation of ${\alpha},{\beta}-unsaturated$ carbonyl motif was attempted. 1 was reduced by catalytic hydrogenation, sodium borohydride, and lithium aluminumhydride. Catalytic hydrogenation with 30 psi or 15 psi of $H_2$ gas of 1 generated 8-butyl-5,7-dimethoxy-2,2-dimethylchroman (2) and 1-(5,7-dimethoxy-2,2-dimethylchroman-8-yl)butan-1-one (3), respectively. Reduction with sodium borohydride occurred at the double bond of ${\alpha},{\beta}-unsaturated$ ketone of 1 to give 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)butan-1-one (4). Reduction of 1 with lithium aluminumhydride and then quenched with methanol and water produced unexpected products, 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)-3-methoxy-1-butene (5) and 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)-3-hydroxy-1-butene (6). These are formed from the isomerization of initial product 9 through the continuous conjugate carbocation intermediate 11. Addition of ethylmagnesium bromide and dimethyl malonate anion to 1 gave the conjugate adducts 7 and 8. Ethylmagesium bromide and sodium borohydride reduction unusually gave the conjugate addition due to steric congestion around carbonyl group of 1. Compound 2 exhibits the reduced inhibitory activity against $NF-{\kappa}B$ activation and the others do not show the activity. Therefore ${\alpha},{\beta}-unsaturated$ carbonyl group of 1 should be important for its inhibitory activity.

Crystal Structure of PDZ Domains, Protein Interaction Modules

  • Park, Seong-Ho;Im, Young-Jun;Soyoung Yang;Kim, Eunjoon;Eom, Soo-Hyun
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.21-21
    • /
    • 2001
  • PDZ domains are molecular-recognition elements that mediate protein-protein interactions. The PDZ domain was discovered originally as a common motif present in three structurally related proteins: PSD-95 (postsynaptic density protein), Dlg (discs-large protein) and ZQ-1 (zonula occludens-1). The PDZ domain is globular domain, containing about 80-100 amino acids, and a conserved motif with two alpha helices and six beta strands. Most of them bind selectively to the C-termini of the interacting proteins at the complexes of signaling molecules and membrane associated receptors.(omitted)

  • PDF

Sll0396 regulates transcription of the phycocyanin genes in Synechocystis sp. PCC 6803

  • Oh, In-Hye;Kim, Ho-San;Chung, Young-Ho;Kim, Young-Hye;Park, Young-Mok
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.193-199
    • /
    • 2010
  • An olive-green mutant was generated in Synechocystis sp. strain PCC 6803 by inactivation of the sll0396 gene. Whole-cell absorption spectra of the mutant revealed the missing of phycocyanin peak. An investigation of the low-temperature fluorescence emission spectra revealed that the $sll0396{\Omega}$ mutant has a reduced amount of phycocyanin. Western blot analysis showed that the mutant contained less phycocyanin ${\beta}$- and ${\alpha}$-subunits and lacked the 30- and 32-kDa linker polypeptides, and northern blot analysis revealed that the transcription of the 1.4-kb cpcBA gene encoding the phycocyanin ${\beta}$- and ${\alpha}$-subunits was lower in the mutant. The Sll0396 protein has a DNA-binding motif and shares homology with known response regulators. Our results indicate that Sll0396 plays a regulatory role in the transcription of the phycocyanin genes during phycobilisome synthesis.