DOI QR코드

DOI QR Code

Backbone 1H, 15N, and 13C resonance assignments and secondary structure prediction of SAV2228 (translation initiation factor-1) from Staphylococcus aureus

  • Kim, Do-Hee (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Jang, Sun-Bok (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2012.11.09
  • Accepted : 2012.12.10
  • Published : 2012.12.20

Abstract

SAV2228 has an OB (Oligomer-Binding)-motif which is frequently used for nucleic acid recognition. To characterize the activity of translation initiation factor-1 (IF-1) from Staphylococcus aureus, SAV2228 was expressed and purified in Escherichia coli. We acquired 3D NMR spectra showing well dispersed and homogeneous signals which allow us to assign 94.4% of all $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$ and $^{13}CO$ resonances. We could predict a secondary structure of SAV2228 using TALOS and CSI from NMR data. SAV2228 was consisted of one ${\alpha}$-helix and five ${\beta}$-sheets. The predicted secondary structure, ${\beta}-{\beta}-{\beta}-{\alpha}-{\beta}-{\beta}$, was similar to other bacterial IF-1, but it was not completely same to the eukaryotic one. Assigned NMR peaks and secondary structre prediction can be used for the study on interaction with nucleic acid in the future.

Keywords

References

  1. P. Bhateja, K. Purnapatre, S. Dube, T. Fatma, A. Rattan, Int. J. Antimicro. Ag. 27, 201 (2006). https://doi.org/10.1016/j.ijantimicag.2005.10.008
  2. K. Shimada et al., Jpn. J. Antibiot. 54, 331 (2001).
  3. Z. A. Mirani, N. Jamil. JCPSP 20, 558 (2010).
  4. P. D. Mauldin, C. D. Salgado, V. L. Durkalski, J. A. Bosso, Annals Pharmacother. 42, 317 (2008). https://doi.org/10.1345/aph.1K501
  5. M. W. Pletz, O. Burkhardt, T. Welte, Eur. J. Med. Res. 15, 507 (2010). https://doi.org/10.1186/2047-783X-15-12-507
  6. K. Hiramatsu, L. Cui, M. Kuroda, T. Ito, Trends Microbiol. 9, 486 (2001). https://doi.org/10.1016/S0966-842X(01)02175-8
  7. F. C. Tenover, J. W. Biddle, M. V. Lancaster, Emerg. Infect. Diseases 7, 327 (2001). https://doi.org/10.3201/eid0702.010237
  8. N. C. Kyrpides, C. R. Woese, Proc. Natl. Acad. Sci. U S A 95, 224 (1998). https://doi.org/10.1073/pnas.95.1.224
  9. A. G. Murzin, EMBO J. 12, 861 (1993).
  10. M. Sette et al., EMBO J. 16, 1436 (1997). https://doi.org/10.1093/emboj/16.6.1436
  11. S.-B. Jang, C. Ma, P. C. Chandan, D.-H. Kim, B.-J. Lee, JKMRS 15, 69 (2011).
  12. S.-B. Jang, C. Ma, S. J. Park, A.-R. Kwon, B.-J. Lee, JKMRS 13, 117 (2009).
  13. F. Delaglio et al.. J. biomol. NMR 6, 277 (1995).
  14. B. A. Johnson, Methods Mol. Biol. 278, 313 (2004).
  15. D. S. Wishart, B. D. Sykes, J. biomol. NMR 4, 171 (1994).
  16. G. Cornilescu, F. Delaglio, A. Bax, J. biomol. NMR 13, 289 (1999). https://doi.org/10.1023/A:1008392405740
  17. G. N. Hatzopoulos, J. Mueller-Dieckmann, FEBS lett. 584, 1011 (2010). https://doi.org/10.1016/j.febslet.2010.01.051
  18. W. Li, D. W. Hoffman, Prot. Sci. 10, 2426 (2001). https://doi.org/10.1110/ps.ps.18201
  19. C. M. Fletcher, T. V. Pestova, C. U. Hellen, G. Wagner, EMBO J 18, 2631 (1999). https://doi.org/10.1093/emboj/18.9.2631
  20. J. L. Battiste, T. V. Pestova, C. U. Hellen, G. Wagner, Mol cell 5, 109 (2000). https://doi.org/10.1016/S1097-2765(00)80407-4