Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Ryu, Min Sook (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Kim, Hong Seok (Department of Molecular Medicine, Inha University, College of Medicine) ;
  • Suganuma, Masami (Research Institute for Clinical Oncology, Saitama Cancer Center) ;
  • Song, Kye Yong (Department of Pathology, Chung-Ang University College of Medicine) ;
  • Lim, In Kyoung (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
  • Received : 2015.12.24
  • Accepted : 2015.12.31
  • Published : 2016.03.31


The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.


Supported by : National Research Foundation (NRF)


  1. Abel, E.L., Angel, J.M., Kiguchi, K., and DiGiovanni, J. (2009). Multistage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat. Protoc. 4, 1350-1362.
  2. Alessandrini, A., Crews, C.M., and Erikson, R.L. (1992). Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the Erk-1 gene product. Proc. Natl. Acad. Sci. USA 89, 8200-8204.
  3. Alexandropoulos, K., Qureshi, S.A., and Foster, D.A. (1993). Ha- Ras functions downstream from protein kinase C in v-Fpsinduced gene expression mediated by TPA response elements. Oncogene 8, 803-807.
  4. Araujo, H., Danziger, N., Cordier, J., Glowinski, J., and Chneiweiss, H. (1993). Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J. Biol. Chem. 268, 5911-5920.
  5. Ashendel, C.L. (1985). The phorbol ester receptor: a phospholipidregulated protein kinase. Biochim. Biophys. Acta 822, 219-242.
  6. Bardwell, A.J., Flatauer, L.J., Matsukuma, K., Thorner, J., and Bardwell, L. (2001). A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J. Biol. Chem. 276, 10374-10386.
  7. Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222.
  8. Buchner, K. (1995). Protein kinase C in the transduction of signals toward and within the cell nucleus. Eur. J. Biochem. 228, 211-221.
  9. Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522.
  10. Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S. (1998). Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262-1265.
  11. Candas, D., Fan, M., Nantajit, D., Vaughan, A.T., Murley, J.S., Woloschak, G.E., Grdina, D.J., and Li, J.J. (2013). CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J. Mol. Cell Biol. 5, 166-175.
  12. Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40.
  13. Chen, R.H., Sarnecki, C., and Blenis, J. (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell Biol. 12, 915-927.
  14. Clemens, M.J., Trayner, I., and Menaya, J. (1992). The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J. Cell Sci. 103, 881-887.
  15. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A.J., Barradas, M., Benguria, A., Zaballos, A., Flores, J.M., Barbacid, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436, 642.
  16. Cruzalegui, F.H., Cano, E., and Treisman, R. (1999). ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18, 7948-7957.
  17. Devanand, P., Kim, S.I., Choi, Y.W., Sheen, S.S., Yim, H., Ryu, M.S., Kim, S.J., Kim, W.J., and Lim, I.K. (2014). Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1. FEBS J. 281, 5581-5601.
  18. Jaken, S. (1990). Protein kinase C and tumor promoters. Curr. Opin. Cell Biol. 2, 192-197.
  19. Kazi, J.U., and Soh, J.W. (2008). Induction of the nuclear protooncogene c-fos by the phorbol ester TPA and v-H-Ras. Mol. Cells 26, 462-467.
  20. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y. (1983). Protein kinase C as a possible receptor protein of tumorpromoting phorbol esters. J. Biol. Chem. 258, 11442-11445.
  21. Kim, H.S., and Lim, I.K. (2009). Phosphorylated extracellular signalregulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J. Biol. Chem. 284, 15475-15486.
  22. Kim, H.S., Song, M.C., Kwak, I.H., Park, T.J., and Lim, I.K. (2003). Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J. Biol. Chem. 278, 37497-37510.
  23. Krueger, J., Chou, F.L., Glading, A., Schaefer, E., and Ginsberg, M.H. (2005). Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation. Mol. Biol. Cell 16, 3552-3561.
  24. Kwak, I.H., Kim, H.S., Choi, O.R., Ryu, M.S., and Lim, I.K. (2004). Nuclear accumulation of globular actin as a cellular senescence marker. Cancer Res. 64, 572-580.
  25. Lee, Y.Y., Kim, H.S., and Lim, I.K. (2015). Downregulation of PEA-15 reverses G1 arrest, and nuclear and chromatin changes of senescence phenotype via pErk1/2 translocation to nuclei. Cell. Signal. 27, 1102-1109.
  26. Lim, I.K., Won Hong, K., Kwak, I.H., Yoon, G., and Park, S.C. (2000). Cytoplasmic retention of p-Erk1/2 and nuclear accumulation of actin proteins during cellular senescence in human diploid fibroblasts. Mech. Ageing Dev. 119, 113-130.
  27. Lu, Z., Liu, D., Hornia, A., Devonish, W., Pagano, M., and Foster, D.A. (1998). Activation of protein kinase C triggers its ubiquitination and degradation. Mol. Cell Biol. 18, 839-845.
  28. Menice, C.B., Hulvershorn, J., Adam, L.P., Wang, C.A., and Morgan, K.G. (1997). Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J. Biol. Chem. 272, 25157-25161.
  29. Nishikawa, K., Toker, A., Johannes, F.J., Songyang, Z., and Cantley, L.C. (1997). Determination of the specific substrate sequence motifs of protein kinase C isozymes. J. Biol. Chem. 272, 952-960.
  30. Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607-614.
  31. Nishizuka, Y. (1995). Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 9, 484-496.
  32. Oliva, J.L., Caino, M.C., Senderowicz, A.M., and Kazanietz, M.G. (2008). S-Phase-specific activation of PKC alpha induces senescence in non-small cell lung cancer cells. J. Biol. Chem. 283, 5466-5476.
  33. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.
  34. Renganathan, H., Vaidyanathan, H., Knapinska, A., and Ramos, J.W. (2005). Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD. Biochem. J. 390, 729-735.
  35. Rodier, F., Munoz, D.P., Teachenor, R., Chu, V., Le, O., Bhaumik, D., Coppe, J.P., Campeau, E., Beausejour, C.M., Kim, S.H., et al. (2011). DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124, 68-81.
  36. Rodriguez, P., Mitton, B., and Kranias, E.G. (2005). Phosphorylation of glutathione-S-transferase by protein kinase C-alpha implications for affinity-tag purification. Biotechnol Lett. 27, 1869-1873.
  37. Thomas, S.M., DeMarco, M., D'Arcangelo, G., Halegoua, S., and Brugge, J.S. (1992). Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68, 1031-1040.
  38. Vaidyanathan, H., Opoku-Ansah, J., Pastorino, S., Renganathan, H., Matter, M.L., and Ramos, J.W. (2007). ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proc. Natl. Acad. Sci. USA 104, 19837-19842.
  39. Vernier, M., Bourdeau, V., Gaumont-Leclerc, M.F., Moiseeva, O., Begin, V., Saad, F., Mes-Masson, A.M., and Ferbeyre, G. (2011). Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 25, 41-50.
  40. Wen-Sheng, W., and Jun-Ming, H. (2005). Activation of protein kinase C alpha is required for TPA-triggered ERK (MAPK) signaling and growth inhibition of human hepatoma cell HepG2. J. Biomed. Sci. 12, 289-296.
  41. Wright, W.E., and Shay, J.W. (2001). Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98-103.
  42. Yang, S.H., Yates, P.R., Whitmarsh, A.J., Davis, R.J., and Sharrocks, A.D. (1998). The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol. Cell Biol. 18, 710-720.

Cited by

  1. Survive or thrive: tradeoff strategy for cellular senescence vol.49, pp.6, 2017,