DOI QR코드

DOI QR Code

TrkB Promotes Breast Cancer Metastasis via Suppression of Runx3 and Keap1 Expression

  • Kim, Min Soo (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University) ;
  • Lee, Won Sung (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University) ;
  • Jin, Wook (Laboratory of Molecular Disease and Cell Regulation, Department of Molecular Medicine, School of Medicine, Gachon University)
  • Received : 2015.11.11
  • Accepted : 2015.11.24
  • Published : 2016.03.31

Abstract

In metastatic breast cancer, the acquisition of malignant traits has been associated with the increased rate of cell growth and division, mobility, resistance to chemotherapy, and invasiveness. While screening for the key regulators of cancer metastasis, we observed that neurotrophin receptor TrkB is frequently overexpressed in breast cancer patients and breast cancer cell lines. Additionally, we demonstrate that TrkB expression and clinical breast tumor pathological phenotypes show significant correlation. Moreover, TrkB expression was significantly upregulated in basal-like, claudin-low, and metaplastic breast cancers from a published microarray database and in patients with triple-negative breast cancer, which is associated with a higher risk of invasive recurrence. Interestingly, we identified a new TrkB-regulated functional network that is important for the tumorigenicity and metastasis of breast cancer. We demonstrated that TrkB plays a key role in regulation of the tumor suppressors Runx3 and Keap1. A markedly increased expression of Runx3 and Keap1 was observed upon knockdown of TrkB, treatment with a TrkB inhibitor, and in TrkB kinase dead mutants. Additionally, the inhibition of PI3K/AKT activation significantly induced Runx3 and Keap1 expression. Furthermore, we showed that TrkB enhances metastatic potential and induces proliferation. These observations suggest that TrkB plays a key role in tumorigenicity and metastasis of breast cancer cells through suppression of Runx3 or Keap1 and that it is a promising target for future intervention strategies for preventing tumor metastasis and cancer chemoprevention.

Keywords

References

  1. Bardelli, A., Parsons, D.W., Silliman, N., Ptak, J., Szabo, S., Saha, S., Markowitz, S., Willson, J.K., Parmigiani, G., Kinzler, K.W., et al. (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300, 949. https://doi.org/10.1126/science.1082596
  2. Cancer Genome Atlas, N. (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. https://doi.org/10.1038/nature11412
  3. Chao, M.V., and Bothwell, M. (2002). Neurotrophins: to cleave or not to cleave. Neuron 33, 9-12. https://doi.org/10.1016/S0896-6273(01)00573-6
  4. Chen, L.F. (2012). Tumor suppressor function of RUNX3 in breast cancer. J. Cell Biochem. 113, 1470-1477.
  5. Chi, X.Z., Yang, J.O., Lee, K.Y., Ito, K., Sakakura, C., Li, Q.L., Kim, H.R., Cha, E.J., Lee, Y.H., Kaneda, A., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor (Bierie and Moses)-activated SMAD. Mol. Cell Biol. 25, 8097-8107. https://doi.org/10.1128/MCB.25.18.8097-8107.2005
  6. Dai, B., Yoo, S.Y., Bartholomeusz, G., Graham, R.A., Majidi, M., Yan, S., Meng, J., Ji, L., Coombes, K., Minna, J.D., et al. (2013). KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer. Cancer Res. 73, 5532-5543. https://doi.org/10.1158/0008-5472.CAN-13-0712
  7. DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106-109. https://doi.org/10.1038/nature10189
  8. Ding, L., Getz, G., Wheeler, D.A., Mardis, E.R., McLellan, M.D., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D.M., Morgan, M.B., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075. https://doi.org/10.1038/nature07423
  9. Dionne, C.A., Camoratto, A.M., Jani, J.P., Emerson, E., Neff, N., Vaught, J.L., Murakata, C., Djakiew, D., Lamb, J., Bova, S., et al. (1998). Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin. Cancer Res. 4, 1887-1898.
  10. Douma, S., Van Laar, T., Zevenhoven, J., Meuwissen, R., Van Garderen, E., and Peeper, D. S. (2004). Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034-1039. https://doi.org/10.1038/nature02765
  11. Eades, G., Yang, M., Yao, Y., Zhang, Y., and Zhou, Q. (2011). miR- 200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286, 40725-40733. https://doi.org/10.1074/jbc.M111.275495
  12. Eggert, A., Grotzer, M.A., Ikegaki, N., Zhao, H., Cnaan, A., Brodeur, G. M., and Evans, A. E. (2001). Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms' tumor. J. Clin. Oncol. 19, 689-696. https://doi.org/10.1200/JCO.2001.19.3.689
  13. Geiger, T.R., and Peeper, D.S. (2005). The neurotrophic receptor TrkB in anoikis resistance and metastasis: a perspective. Cancer Res. 65, 7033-7036. https://doi.org/10.1158/0008-5472.CAN-05-0709
  14. Goh, Y.M., Cinghu, S., Hong, E.T., Lee, Y.S., Kim, J.H., Jang, J.W., Li, Y.H., Chi, X.Z., Lee, K.S., Wee, H., et al. (2010). Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J. Biol. Chem. 285, 10122-10129. https://doi.org/10.1074/jbc.M109.071381
  15. Hanada, N., Takahata, T., Zhou, Q., Ye, X., Sun, R., Itoh, J., Ishiguro, A., Kijima, H., Mimura, J., Itoh, K., et al. (2012). Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12, 66. https://doi.org/10.1186/1471-2407-12-66
  16. Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  17. Hartikainen, J.M., Tengstrom, M., Winqvist, R., Jukkola-Vuorinen, A., Pylkas, K., Kosma, V.M., Soini, Y., and Mannermaa, A. (2015). KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin. Cancer Res. 21, 1591-1601. https://doi.org/10.1158/1078-0432.CCR-14-1887
  18. Hartwell, K.A., Muir, B., Reinhardt, F., Carpenter, A.E., Sgroi, D.C., and Weinberg, R.A. (2006). The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc. Natl. Acad. Sci. USA 103, 18969-18974. https://doi.org/10.1073/pnas.0608636103
  19. Hennessy, B.T., Gonzalez-Angulo, A.M., Stemke-Hale, K., Gilcrease, M. Z., Krishnamurthy, S., Lee, J.S., Fridlyand, J., Sahin, A., Agarwal, R., Joy, C., et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-tomesenchymal transition and stem cell characteristics. Cancer Res. 69, 4116-4124.
  20. Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., Salto-Tellez, M., Ito, K., Ito, Y., and Chen, L.F. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene 31, 527-534. https://doi.org/10.1038/onc.2011.252
  21. Jaramillo, M.C., and Zhang, D.D. (2013). The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179-2191. https://doi.org/10.1101/gad.225680.113
  22. Jin, W., Kim, G.M., Kim, M.S., Lim, M.H., Yun, C., Jeong, J., Nam, J.S., and Kim, S.J. (2010). TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31, 1939-1947. https://doi.org/10.1093/carcin/bgq180
  23. Ke, B., Shen, X.D., Zhang, Y., Ji, H., Gao, F., Yue, S., Kamo, N., Zhai, Y., Yamamoto, M., Busuttil, R.W., et al. (2013). KEAP1-NRF2 complex in ischemia-induced hepatocellular damage of mouse liver transplants. J. Hepatol. 59, 1200-1207. https://doi.org/10.1016/j.jhep.2013.07.016
  24. Kim, M. S., Lee, W. S., Jeong, J., Kim, S. J., and Jin, W. (2015). Induction of metastatic potential by TrkB via activation of IL6/JAK2/STAT3 and PI3K/AKT signaling in breast cancer. Oncotarget 6, 40158-40171. https://doi.org/10.18632/oncotarget.5522
  25. Knusel, B., and Hefti, F. (1992). K-252 compounds: modulators of neurotrophin signal transduction. J. Neurochem. 59, 1987-1996.
  26. Koizumi, S., Contreras, M. L., Matsuda, Y., Hama, T., Lazarovici, P., and Guroff, G. (1988). K-252a: a specific inhibitor of the action of nerve growth factor on PC 12 cells. J. Neurosci. 8, 715-721. https://doi.org/10.1523/JNEUROSCI.08-02-00715.1988
  27. Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
  28. Lin, F.C., Liu, Y.P., Lai, C.H., Shan, Y.S., Cheng, H.C., Hsu, P.I., Lee, C.H., Lee, Y.C., Wang, H.Y., Wang, C.H., et al. (2012). RUNX3- mediated transcriptional inhibition of Akt suppresses tumorigenesis of human gastric cancer cells. Oncogene 31, 4302-4316. https://doi.org/10.1038/onc.2011.596
  29. Lu, J., Guo, H., Treekitkarnmongkol, W., Li, P., Zhang, J., Shi, B., Ling, C., Zhou, X., Chen, T., Chiao, P.J., et al. (2009). 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelialmesenchymal transition. Cancer Cell 16, 195-207. https://doi.org/10.1016/j.ccr.2009.08.010
  30. Ma, X.J., Salunga, R., Tuggle, J.T., Gaudet, J., Enright, E., McQuary, P., Payette, T., Pistone, M., Stecker, K., Zhang, B.M., et al. (2003). Gene expression profiles of human breast cancer progression. Proc. Natl. Acad. Sci. USA 100, 5974-5979. https://doi.org/10.1073/pnas.0931261100
  31. Marchetti, A., Felicioni, L., Pelosi, G., Del Grammastro, M., Fumagalli, C., Sciarrotta, M., Malatesta, S., Chella, A., Barassi, F., Mucilli, F., et al. (2008). Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum. Mutat. 29, 609-616. https://doi.org/10.1002/humu.20707
  32. Miknyoczki, S.J., Dionne, C.A., Klein-Szanto, A.J., and Ruggeri, B.A. (1999). The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann. N Y Acad. Sci. 880, 252-262. https://doi.org/10.1111/j.1749-6632.1999.tb09530.x
  33. Rizvi, F., Shukla, S., and Kakkar, P. (2014). Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 5, e1153. https://doi.org/10.1038/cddis.2014.118
  34. Scheel, C., Eaton, E.N., Li, S.H., Chaffer, C.L., Reinhardt, F., Kah, K.J., Bell, G., Guo, W., Rubin, J., Richardson, A.L., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926-940. https://doi.org/10.1016/j.cell.2011.04.029
  35. Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M., and Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358-1368, 1368 e1351-1354. https://doi.org/10.1053/j.gastro.2008.06.082
  36. Smit, M.A., and Peeper, D.S. (2011). Zeb1 is required for TrkBinduced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30, 3735-3744. https://doi.org/10.1038/onc.2011.96
  37. van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M. J., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl. J. Med. 347, 1999-2009. https://doi.org/10.1056/NEJMoa021967
  38. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939. https://doi.org/10.1016/j.cell.2004.06.006
  39. Yilmaz, T., Jiffar, T., de la Garza, G., Lin, H., Milas, Z., Takahashi, Y., Hanna, E., MacIntyre, T., Brown, J.L., Myers, J.N., et al. (2010). Theraputic targeting of Trk supresses tumor proliferation and enhances cisplatin activity in HNSCC. Cancer Biol. Ther. 10, 644-653. https://doi.org/10.4161/cbt.10.6.12782
  40. Zhang, S., Guo, D., Luo, W., Zhang, Q., Zhang, Y., Li, C., Lu, Y., Cui, Z., and Qiu, X. (2010). TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 10, 43. https://doi.org/10.1186/1471-2407-10-43

Cited by

  1. Therapeutic Potentials of BDNF/TrkB in Breast Cancer; Current Status and Perspectives vol.118, pp.9, 2017, https://doi.org/10.1002/jcb.25943
  2. Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate vol.291, pp.45, 2016, https://doi.org/10.1074/jbc.M116.729418
  3. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-017-3907-z
  4. Role of the nervous system in cancer metastasis vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0674-x
  5. TrkC promotes colorectal cancer growth and metastasis vol.8, pp.25, 2016, https://doi.org/10.18632/oncotarget.17289
  6. Keap1 Inhibits Metastatic Properties of NSCLC Cells by Stabilizing Architectures of F-Actin and Focal Adhesions vol.16, pp.3, 2016, https://doi.org/10.1158/1541-7786.mcr-17-0544
  7. TRKB tyrosine kinase receptor is a potential therapeutic target for poorly differentiated oral squamous cell carcinoma vol.9, pp.38, 2016, https://doi.org/10.18632/oncotarget.25396
  8. TrkB-Induced Inhibition of R-SMAD/SMAD4 Activation is Essential for TGF-β-Mediated Tumor Suppressor Activity vol.12, pp.4, 2020, https://doi.org/10.3390/cancers12041048
  9. Ovarian BDNF promotes survival, migration, and attachment of tumor precursors originated from p53 mutant fallopian tube epithelial cells vol.9, pp.5, 2020, https://doi.org/10.1038/s41389-020-0243-y
  10. Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors vol.57, pp.4, 2016, https://doi.org/10.1177/0300985820921813
  11. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism vol.33, pp.13, 2016, https://doi.org/10.1089/ars.2020.8024
  12. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer vol.136, pp.None, 2016, https://doi.org/10.1016/j.cyto.2020.155270
  13. A new immunochemical strategy for triple-negative breast cancer therapy vol.11, pp.1, 2016, https://doi.org/10.1038/s41598-021-94230-4