DOI QR코드

DOI QR Code

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Jung, Ye Jin (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kang, Bin Goo (ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Kim, Woo Taek (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2015.10.20
  • Accepted : 2015.11.11
  • Published : 2016.03.31

Abstract

Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

Keywords

References

  1. Agarwal, P.K., Agarwal, P., Reddy, M., and Sopory, S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263-1274 https://doi.org/10.1007/s00299-006-0204-8
  2. Benjamin, J.G., and Nielsen, D.C. (2006). Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 97, 248-253 https://doi.org/10.1016/j.fcr.2005.10.005
  3. Bergler, J., and Hoth, S. (2011). Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol. (Stuttg) 13, 725-730 https://doi.org/10.1111/j.1438-8677.2010.00431.x
  4. Byun, M.Y., Lee, J., Cui, L.H., Kang, Y., Oh, T.K., P, H., Lee, H., and Kim, W.T. (2015). Constitutive expression of DaCBF7, an Antarctic vascular plant, Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science 236, 61-74 https://doi.org/10.1016/j.plantsci.2015.03.020
  5. Cho, S.K., Chung, H.S., Ryu, M.Y., Park, M.J., Lee, M.M., Bahk, Y.Y., Kim, J., Pai, H.S., and Kim, W.T. (2006). Heterologous expression and molecular and cellular characterization of CaPUB1 encoding a hot pepper U-Box E3 ubiquitin ligase homolog. Plant Physiol. 142, 1664-1682 https://doi.org/10.1104/pp.106.087965
  6. Cho, S.K., Ryu, M.Y., Song, C., Kwak, J.M., and Kim, W.T. (2008). Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20, 1899-1914 https://doi.org/10.1105/tpc.108.060699
  7. Cho, S.K., Ryu, M.Y., Seo, D.H., Kang, B.G., and Kim, W.T. (2011). The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses. Plant physiol. 157, 2240-2257 https://doi.org/10.1104/pp.111.185595
  8. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and coldresponsive gene expression. Plant J. 33, 751-763 https://doi.org/10.1046/j.1365-313X.2003.01661.x
  9. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854-1865 https://doi.org/10.1104/pp.124.4.1854
  10. Han, M., Kim, C.-Y., Lee, J., Lee, S.-K., and Jeon, J.-S. (2014). OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol. Cells 37, 532-539 https://doi.org/10.14348/molcells.2014.0128
  11. Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47, 141-153 https://doi.org/10.1093/pcp/pci230
  12. Kim, S.I., and Tai, T.H. (2011). Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 178, 437-447 https://doi.org/10.1007/s10681-010-0343-4
  13. Kim, S.J., and Kim, W.T. (2013). Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett. 587, 2584-2590 https://doi.org/10.1016/j.febslet.2013.06.038
  14. Lee, J-H., and Kim, W.T. (2011). Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol. Cells 31, 201-208 https://doi.org/10.1007/s10059-011-0031-9
  15. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  16. Liu, F., Xu, W., Wei, Q., Zhang, Z., Xing, Z., Tan, L., Di, C., Yao, D., Wang, C., Tan, Y., et al. (2010). Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica) and 93-11 (Indica) during oxidative stress. PLoS One 5, e8632 https://doi.org/10.1371/journal.pone.0008632
  17. Liu, Y.C., Wu, Y.R., Huang, X.H., Sun, J., and Xie, Q. (2011). AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Mol. Plant 4, 938-946 https://doi.org/10.1093/mp/ssr030
  18. Lyzenga, W.J., and Stone, S.L. (2012). Abiotic stress tolerance mediated by protein ubiquitination. J. Exp. Bot. 63, 599-616 https://doi.org/10.1093/jxb/err310
  19. Mackill, D.J., and Lei, X. (1997). Genetic variation for traits related to temperature adaptation of rice cultivars. Crop Sci. 37, 1340-1346 https://doi.org/10.2135/cropsci1997.0011183X003700040051x
  20. Park, J.J., Yi, J., Yoon, J., Cho, L.H., Ping, J., Jeong, H.J., Cho, S.K., Kim, W.T., and An, G. (2011). OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J. 65, 194-205 https://doi.org/10.1111/j.1365-313X.2010.04416.x
  21. Praba, M.L., Cairns, J.E., Babu, R.C., and Lafitte, H.R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 195, 30-46 https://doi.org/10.1111/j.1439-037X.2008.00341.x
  22. Seo, D.H., Ryu, M.Y., Jammes, F., Hwang, J.H., Turek, M., Kang, B.G., Kwak, J.M., and Kim, W.T. (2012). Roles of four Arabidopsis U-box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol. 160, 556-568 https://doi.org/10.1104/pp.112.202143
  23. Shaw, C.H. (1995). Introduction of cloning plasmids into Agrobacterium tumefaciens. In Plant gene transfer and expression protocols, Springer New York, 49, 33-37
  24. Shen, C., Li, D., He, R., Fang, Z., Xia, Y., Gao, J., Shen, H., and Cao, M. (2014). Comparative transcriptome analysis of RNAseq data for cold-tolerant and cold-sensitive rice genotypes under cold stress. J. Plant Biol. 56, 337-348
  25. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  26. Stegmann, M., Anderson, R.G., Ichimura, K., Pecenkova, T., Reuter, P., Zarsky, V., McDowell, J.M., Shirasu, K., and Trujillo, M. (2012). The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24, 4703-4716 https://doi.org/10.1105/tpc.112.104463
  27. Su, C.F., Wang, Y.C., Hsieh, T.H., Tseng, T.H., Lu, C.A., Tseng, T.H., and Yu, S.M. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153, 145-158 https://doi.org/10.1104/pp.110.153015
  28. Thomashow, M.F. (2010). Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 154, 571-577 https://doi.org/10.1104/pp.110.161794
  29. Tripathi, R.D., Tripathi, P., Dwivedi, S., Dubey, S., Chatterjee, S., Chakrabarty, D., and Trivedi, P.K. (2012). Arsenomics: omics of arsenic metabolism in plants. Front. Physiol. 3, 275
  30. Trujillo, M., Ichimura, K., Casais, C., and Shirasu, K. (2008). Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr. Biol. 18, 1396-1401 https://doi.org/10.1016/j.cub.2008.07.085
  31. Vierstra, R.D. (2009). The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell. Biol. 110, 385-397
  32. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., and Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67, 589-602 https://doi.org/10.1007/s11103-008-9340-6
  33. Wang, C., Wei, Q., Zhang, K., Wang, L., Liu, F., Zhao, L., Tan, Y., Di, C., Yan, H., Yu, J., et al. (2013). Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 8, e81849 https://doi.org/10.1371/journal.pone.0081849
  34. Xu, M., Li, L., Fan, Y., Wan, J., and Wang, L. (2011). ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep. 30, 1949-1957 https://doi.org/10.1007/s00299-011-1103-1
  35. Yang, C.W., Gonzalez-Lamothe, R., Ewan, R.A., Rowland, O., Yoshioka, H., Shenton, M., Ye, H., O'Donnell, E., Jones, J.D., and Sadanandom, A. (2006). The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18, 1084-1098 https://doi.org/10.1105/tpc.105.039198
  36. Yee, D., and Goring, D.R. (2009). The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60, 1109-1121 https://doi.org/10.1093/jxb/ern369
  37. Zeng, L.R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., Xie, Q., Nahm, B.H., Leung, H., and Wang, G.L. (2004). Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16, 2795-2808 https://doi.org/10.1105/tpc.104.025171
  38. Zeng, D-E., Hou, P., Xiao, F., and Liu, Y. (2014). Overexpressing a novel RING-H2 finger protein gene, OsRHP1, enhances drought and salt tolerance in rice (Oryza sativa L.). J. Plant Biol. 57, 357-365 https://doi.org/10.1007/s12374-013-0481-z
  39. Zhang, Q., Jiang, N., Wang, G.L., Hong, Y., and Wang, Z. (2013). Advances in understanding cold sensing and the coldresponsive network in rice. Adv. Crop Sci. Tech. 1, 104

Cited by

  1. Molecular characterization, expression pattern and function analysis of the rice OsDUF866 family vol.31, pp.2, 2017, https://doi.org/10.1080/13102818.2016.1268932
  2. Molecular characterization and function analysis of the rice OsDUF946 family vol.31, pp.3, 2017, https://doi.org/10.1080/13102818.2017.1289122
  3. Homologous U-box E3 Ubiquitin Ligases OsPUB2 and OsPUB3 Are Involved in the Positive Regulation of Low Temperature Stress Response in Rice (Oryza sativa L.) vol.8, 2017, https://doi.org/10.3389/fpls.2017.00016
  4. Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana vol.7, 2017, https://doi.org/10.1038/srep43007
  5. Molecular characterization and functional analysis of the OsPsbR gene family in rice vol.292, pp.2, 2017, https://doi.org/10.1007/s00438-016-1273-1
  6. Rapid Regeneration and Reuse of Silica Columns from PCR Purification and Gel Extraction Kits vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30316-w
  7. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation vol.8, pp.4, 2018, https://doi.org/10.1007/s13205-018-1194-2
  8. OsDIRP1, a Putative RING E3 Ligase, Plays an Opposite Role in Drought and Cold Stress Responses as a Negative and Positive Factor, Respectively, in Rice ( Oryza sativa L.) vol.9, pp.None, 2016, https://doi.org/10.3389/fpls.2018.01797
  9. Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-41041-3
  10. Molecular characterization and function analysis of the rice OsDUF1191 family vol.33, pp.1, 2019, https://doi.org/10.1080/13102818.2019.1684843
  11. Transcriptome profiling and phytohormone responses of Arabidopsis roots to different ambient temperatures vol.14, pp.1, 2016, https://doi.org/10.1080/17429145.2019.1634770
  12. The involvement of wheat U‐box E3 ubiquitin ligase TaPUB1 in salt stress tolerance vol.62, pp.5, 2016, https://doi.org/10.1111/jipb.12842
  13. Abiotic Stress-Induced Actin-Depolymerizing Factor 3 From Deschampsia antarctica Enhanced Cold Tolerance When Constitutively Expressed in Rice vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.734500
  14. TaPUB15 , a U‐Box E3 ubiquitin ligase gene from wheat, enhances salt tolerance in rice vol.10, pp.1, 2021, https://doi.org/10.1002/fes3.250
  15. The Ubiquitin Switch in Plant Stress Response vol.10, pp.2, 2016, https://doi.org/10.3390/plants10020246
  16. Evolutionary and Characteristic Analysis of RING-DUF1117 E3 Ubiquitin Ligase Genes in Gossypium Discerning the Role of GhRDUF4D in Verticillium dahliae Resistance vol.11, pp.8, 2016, https://doi.org/10.3390/biom11081145
  17. Vitis vinifera VvPUB17 functions as a E3 ubiquitin ligase and enhances powdery mildew resistance via the salicylic acid signaling pathway vol.11, pp.3, 2016, https://doi.org/10.3233/jbr-210709
  18. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions vol.21, pp.1, 2016, https://doi.org/10.1186/s12870-020-02799-1