• 제목/요약/키워드: ${\Phi}$-map

검색결과 68건 처리시간 0.022초

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • 대한수학회지
    • /
    • 제37권6호
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF

ON TRANSVERSALLY HARMONIC MAPS OF FOLIATED RIEMANNIAN MANIFOLDS

  • Jung, Min-Joo;Jung, Seoung-Dal
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.977-991
    • /
    • 2012
  • Let (M,F) and (M',F') be two foliated Riemannian manifolds with M compact. If the transversal Ricci curvature of F is nonnegative and the transversal sectional curvature of F' is nonpositive, then any transversally harmonic map ${\phi}:(M,F){\rightarrow}(M^{\prime},F^{\prime})$ is transversally totally geodesic. In addition, if the transversal Ricci curvature is positive at some point, then ${\phi}$ is transversally constant.

A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

  • Park, Seh-Ie
    • 대한수학회지
    • /
    • 제35권4호
    • /
    • pp.803-829
    • /
    • 1998
  • We give general fixed point theorems for compact multimaps in the "better" admissible class $B^{K}$ defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for $\Phi$-condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

  • PDF

Circular Permutation of the DNA Genome of Temperate Bacteriophage $\PhiFC1$ from Enterococcus faecalis KBL 703

  • Kim, Young-Woo;Jang, Se-Hwan;Hong, Bum-Shik;Lim, Wang-Jin;Kim, Chan-Wha;Sung, Ha-Chin;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.457-463
    • /
    • 1999
  • The physical map of bacteriophage $\PhiFC1$ DNA was constructed with the restriction endonucleases SalI, BamHI, EcoRI, XbaI, and AvaI. The 40.5-kb DNA restriction map is shown to be circularly permuted representing the headful packaging mechanism of the phage. The DNA restriction fragments containing the packaging initiation site(pac) was localized on the restriction map and the nucleotide sequences of the region were analyzed. Four open reading frames (ORFs), following one another with the same orientation, were found at the region. The 2nd ORF (ORF-ts) has significant amino acid sequence homologies to the previously known terminase small subunits of other bacteriophages. The putative terminase small subunit gene has a presumptive NTP-hydrolysis motif and a helix-turn-helix motif. The cleavage site for the first round of packaging was found to be located at the coding sequence of the putative terminase small subunit gene. The fourth ORF, even if partially sequenced, has a good amino acid sequence homology to the portal vertex proteins of other bacteriophages representing the evolutionarily conserved arrangements of genes near the pac site of this bacteriophage, $\PhiFC1$.

  • PDF

THEOREMS OF LIOUVILLE TYPE FOR QUASI-STRONGLY $\rho$-HARMONIC MAPS

  • Yun, Gab-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권2호
    • /
    • pp.107-111
    • /
    • 2002
  • In this article, we prove various properties and some Liouville type theorems for quasi-strongly p-harmonic maps. We also describe conditions that quasi-strongly p-harmonic maps become p-harmonic maps. We prove that if $\phi$ : $M\;\longrightarrow\;N$ is a quasi-strongly p-harmonic map (\rho\; $\geq\;2$) from a complete noncompact Riemannian manifold M of nonnegative Ricci curvature into a Riemannian manifold N of non-positive sectional curvature such that the $(2\rho-2)$-energy, $E_{2p-2}(\phi)$ is finite, then $\phi$ is constant.

  • PDF

최적확장체 위에서 정의되는 타원곡선에서의 고속 상수배 알고리즘 (Fast Scalar Multiplication Algorithm on Elliptic Curve over Optimal Extension Fields)

  • 정병천;이수진;홍성민;윤현수
    • 정보보호학회논문지
    • /
    • 제15권3호
    • /
    • pp.65-76
    • /
    • 2005
  • EC-DSA나 EC-ElGamal과 같은 타원곡선 암호시스템의 성능 향상을 위해서는 타원곡선 상수배 연산을 빠르게 하는 것이 필수적이다. 타원곡선 특유의 Frobenius 사상을 이용한 $base-{\phi}$ 전개 방식은 Koblitz에 의해 처음 제안되었으며, Kobayashi 등은 최적확장체 위에서 정의되는 타원곡선에 적용할 수 있도록 $base-{\phi}$ 전개 방식을 개선하였다. 그러나 Kobayashi 등의 방법은 여전히 개선의 여지가 남아있다. 본 논문에서는 최적확장체에서 정의되는 타원곡선상에서 효율적인 상수배 연산 알고리즘을 제안한다. 제안한 상수배 알고리즘은 Frobenius사상을 이용하여 상수 값을 Horner의 방법으로 $base-{\phi}$ 전개하고, 이 전개된 수식을 최적화된 일괄처리 기법을 적용하여 연산한다. 제안한 알고리즘을 적용할 경우, Kobayashi 등이 제안한 상수배 알고리즘보다 $20\%{\sim}40\%$ 정도의 속도 개선이 있으며, 기존의 이진 방법에 비해 3배 이상 빠른 성능을 보인다.

MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

  • Ghorbanipour, Somaye;Hejazian, Shirin
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.563-574
    • /
    • 2017
  • Let $\mathcal{A}$ be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ${\phi}$ on $\mathcal{A}$ satisfying ${\phi}(A^2{\circ}B)={\phi}(A)^2{\circ}{\phi}(B)$ is of the form ${\phi}={\varepsilon}{\psi}$ where ${\psi}$ is an automorphism on $\mathcal{A}$ and ${\varepsilon}{\in}\{-1,1\}$. As a consequence if $\mathcal{A}$ is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that ${\phi}(A)={\varepsilon}UAU^*$ for all $A{\in}\mathcal{A}$.

A NOTE ON NONLINEAR SKEW LIE TRIPLE DERIVATION BETWEEN PRIME ⁎-ALGEBRAS

  • Taghavi, Ali;Nouri, Mojtaba;Darvish, Vahid
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.459-465
    • /
    • 2018
  • Recently, Li et al proved that ${\Phi}$ which satisfies the following condition on factor von Neumann algebras $${\Phi}([[A,B]_*,C]_*)=[[{\Phi}(A),B]_*,C]_*+[[A,{\Phi}(B)]_*,C]_*+[[A,B]_*,{\Phi}(C)]_*$$ where $[A,B]_*=AB-BA^*$ for all $A,B{\in}{\mathcal{A}}$, is additive ${\ast}-derivation$. In this short note we show the additivity of ${\Phi}$ which satisfies the above condition on prime ${\ast}-algebras$.

Preservers of Gershgorin Set of Jordan Product of Matrices

  • Joshi, Manoj;Rajeshwari, Kota Nagalakshmi;Santaram, Kilambi;Kanodia, Sandeep
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.589-597
    • /
    • 2018
  • For $A,B{\in}M_2(\mathbb{C})$, let the Jordan product be AB + BA and G(A) the eigenvalue inclusion set, the Gershgorin set of A. Characterization is obtained for maps ${\phi}:M_2(\mathbb{C}){\rightarrow}M_2(\mathbb{C})$ satisfying $$G[{\phi}(A){\phi}(B)+{\phi}(B){\phi}(A)]=G(AB+BA)$$ for all matrices A and B. In fact, it is shown that such a map has the form ${\phi}(A)={\pm}(PD)A(PD)^{-1}$, where P is a permutation matrix and D is a unitary diagonal matrix in $M_2(\mathbb{C})$.