DOI QR코드

DOI QR Code

Preservers of Gershgorin Set of Jordan Product of Matrices

  • Received : 2017.07.24
  • Accepted : 2018.03.09
  • Published : 2018.12.23

Abstract

For $A,B{\in}M_2(\mathbb{C})$, let the Jordan product be AB + BA and G(A) the eigenvalue inclusion set, the Gershgorin set of A. Characterization is obtained for maps ${\phi}:M_2(\mathbb{C}){\rightarrow}M_2(\mathbb{C})$ satisfying $$G[{\phi}(A){\phi}(B)+{\phi}(B){\phi}(A)]=G(AB+BA)$$ for all matrices A and B. In fact, it is shown that such a map has the form ${\phi}(A)={\pm}(PD)A(PD)^{-1}$, where P is a permutation matrix and D is a unitary diagonal matrix in $M_2(\mathbb{C})$.

Keywords

References

  1. V. Forstall, A. Herman, C. K. Li, N. S. Sze and V. Yannello, Preservers of Eigenvalue inclusion sets of matrix products, Linear Algebra Appl., 434(2011), 285-293. https://doi.org/10.1016/j.laa.2010.08.016
  2. J. Hartman, A. Herman and C. K. Li, Preservers of Eigenvalue inclusion sets, Linear Algebra Appl., 433(2010), 1038-1051. https://doi.org/10.1016/j.laa.2010.04.028
  3. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
  4. R. S. Varga, Gershgorin and his circles, Springer Series in Computational Mathematics 36, Springer-Verlag, Berlin, 2004.