• 제목/요약/키워드: ${\Gamma}$-algebra

검색결과 28건 처리시간 0.021초

ON PROJECTIVE REPRESENTATIONS OF A FINITE GROUP AND ITS SUBGROUPS I

  • Park, Seung-Ahn;Park, Eun-Mi
    • 대한수학회지
    • /
    • 제33권2호
    • /
    • pp.387-397
    • /
    • 1996
  • Let G be a finite group and F be a field of characteristic $p \geq 0$. Let $\Gamma = F^f G$ be a twisted group algebra corresponding to a 2-cocycle $f \in Z^2(G,F^*), where F^* = F - {0}$ is the multiplicative subgroup of F.

  • PDF

RELATIONS BETWEEN THE ITO PROCESSES

  • Choi, Won
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.207-213
    • /
    • 1995
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measure on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$-algebras of F. If $r > 0$, let $J = [-r,0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert = sup_{s \in J}$\mid$\gamma(s)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E,F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$.

  • PDF

A NOTE ON ITO PROCESSES

  • Park, Won
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS

  • Bennis, Driss;Mikram, Jilali;Taraza, Fouad
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.7-17
    • /
    • 2017
  • Let R be a commutative ring with zero-divisors Z(R). The extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$, is the (simple) graph with vertices $Z(R)^*=Z(R){\backslash}\{0\}$, the set of nonzero zero-divisors of R, where two distinct nonzero zero-divisors x and y are adjacent whenever there exist two non-negative integers n and m such that $x^ny^m=0$ with $x^n{\neq}0$ and $y^m{\neq}0$. In this paper, we consider the extended zero-divisor graphs of idealizations $R{\ltimes}M$ (where M is an R-module). At first, we distinguish when $\bar{\Gamma}(R{\ltimes}M)$ and the classical zero-divisor graph ${\Gamma}(R{\ltimes}M)$ coincide. Various examples in this context are given. Among other things, the diameter and the girth of $\bar{\Gamma}(R{\ltimes}M)$ are also studied.

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

NON-TRIVIALITY OF TWO HOMOTOPY ELEMENTS IN π*S

  • Liu Xiugui
    • 대한수학회지
    • /
    • 제43권4호
    • /
    • pp.783-801
    • /
    • 2006
  • Let A be the mod p Steenrod algebra for p an arbitrary odd prime and S the sphere spectrum localized at p. In this paper, some useful propositions about the May spectral sequence are first given, and then, two new nontrivial homotopy elements ${\alpha}_1{\jmath}{\xi}_n\;(p{\geq}5,n\;{\geq}\;3)\;and\;{\gamma}_s{\alpha}_1{\jmath}{\xi}_n\;(p\;{\geq}\;7,\;n\;{\geq}\;4)$ are detected in the stable homotopy groups of spheres, where ${\xi}_n\;{\in}\;{\pi}_{p^nq+pq-2}M$ is obtained in [2]. The new ones are of degree 2(p - 1)($p^n+p+1$) - 4 and 2(p - 1)($p^n+sp^2$ + sp + (s - 1)) - 7 and are represented up to nonzero scalar by $b_0h_0h_n,\;b_0h_0h_n\tilde{\gamma}_s\;{\neq}\;0\;{\in}\;Ext^{*,*}_A^(Z_p,\;Z_p)$ in the Adams spectral sequence respectively, where $3\;{\leq}\;s\;<\;p-2$.

FUZZY IDEALS IN Γ-BCK-ALGEBRAS

  • Arsham Borumand Saeid;M. Murali Krishna Rao;Rajendra Kumar Kona
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권4호
    • /
    • pp.429-442
    • /
    • 2023
  • In this paper, we introduce the concept of fuzzy ideals, anti-fuzzy ideals of Γ-BCK-algebras. We study the properties of fuzzy ideals, anti-fuzzy ideals of Γ-BCK-algebras. We prove that if f-1(µ) is a fuzzy ideal of M, then µ is a fuzzy ideal of N, where f : M → N is an epimorphism of Γ-BCK-algebras M and N.