Comm. Korean Math. Soc. 10 (1995), No. 1, pp. 207-213

RELATIONS BETWEEN THE ITO PROCESSES

WonN CHo1l

1. Introduction

Let (2, F, P) be a probability space with F a o-algebra of subsets of
the measure space §2 and P a probability measure on £2. Suppose a > 0
and let (Fi)icj0,q] be an increasing family of sub-o- algebras of 7. If
r >0, let J = [-r,0] and C(J,R™) the Banach space of all continuous
paths v : J — R"™ with the sup-norm ||y|| = sup,cs|y(s)| where |- |
denotes the Euclidean norm on R™. Let E, F' be separable real Banach
spaces and L(E, F) be the Banach space of all continuous linear maps
T : E — F. Throughout this paper, we restrict ourselves to a class of
the autonomous stochastic functional differential equations

~t

2(w)(t) = 2(w)(0) + / H(a(w)))du+ @) [ Gr(a(u)()dus()w)
Y (@)(1) = ¥ (w)(0) + / Hy(y(u)(w), v (u)(w))du
() / G (w(w)(), ¥ () (-))duwa ()

in which the coefficient processes factors through H; : C(J,R") —» R",
Hy : C(J,R") x C(J,R") - R" and G; : C(J,R") —» L(R™ R"),
G2 : C(J,R")x C(J,R") — L(R™,R"), while the noise processes takes
the form {t + w;(¢) : t € [0,a],7 = 1,2} with w; an m-dimensional
Brownian motions on a filtered probability space. We also make the
following standing hypotheses:
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Hypotheses (1) The coefficients H;, G;(: = 1,2) are globally Lipschitz
with Lipschitz constants L;(z = 1,2), respectively.

Hypotheses (2) The coeflicients are continuous.

In this note, we observe the relations between two Ito processes in
view of the consecutive result of [1] and [2]. We examine the relations of
two processes using the linear and bilinear maps in detail.

2. The main results

We begin with:

THEOREM 1. Suppose the Hypotheses (1), (2) are satisfied and E(y'
(0)) is bounded. Then ||%E(;r(t) — z(0))|| and H%E(y(t) — y(0))|| are
bounded and

. 1
Jim —E(a(t) - 2(0)) = Hi(2(0)),
lim = E(y(t) — y(0)) = B(/(0))

t—0+ ¢

Proof. Now

o)D)~ 2@)0) = [ Hla(e)di + ) / 61 (2()()dwr ()(w)
and
Y1) = yw)0) = t'(@)0) + [ () By ! ()(0)
v [ (= WG () ) () Deon ()

for each t € [0,q], a.a. w € Q. By the martingale property of the Ito
integral((3, I1.2], [4]), it follows that

() —2(0))) = %/Ot E(Hi(2(u)))du

t
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and

B30 = y0)) = BGO) + [ Bt - wHau(w),y'w)du.

Hence using the Leibniz’s formula, we have

Jim B(3(e(0) = 2(0) = Jim 5 [ B (e())du = H(a(0)
and

lim B(3((t) - 9(0)))

- 5 (vion+ im, 1 [ B W)y (w) ) du
=E(y'(0)).

On the other hand, let Ky, K; > 0 be such that |H;(z(0))| < Kj,
|H2(y(0),y'(0))| < K, for all 2(0), y(0) and y'(0). Clearly

B0 - 2(O)] £ 7 [ |BUHG0)d < Ky
and

FE) = 3(0)] < By @D+ 7 [ B0, 0] du
< E(y'(0)) + Ka.

Therefore ||$E(z(t) — z(0))|| and || E(y(t) — y(0))|| are bounded.
COROLLARY 2. Let f be a continuous linear map on C(.J,R™). Then

Jim, Ef(z(t) - 2(0) = f(HL(2(0))), lim Ef(y(t) - y(0)
= (B (0))
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Proof. This results follow from the fact that
SEf(2(t) - 2(0)) = [ E(z(t) — 2(0))],
%Ef(y(t) — y(0)) = £ 7 B(#) - u(0)]-
For each t > 0 and w € Q, define z;(w)(t) by

zi(w)(t) = \/-[wz (w)(t) — wi(w)(0)], (¢ =1,2)

Then we now meet:

THEOREM 3. Suppose Hypotheses (1), (2) are satisfied. Then

lim E”%(m(t) — 2(0)) — Gl(x(O))zl(t)Hz ~0

t—0+

and

Jim, B[]0 - 10) = GO,y @) =0
Proof. Writing that
1
ﬁ(x(t) — 2(0)) — G1(=(0))z1(2)
1 ! 1 [
= ﬁ/(; Hl(x(u))du—{—%/o G1(z(u))dw; (u)

— G1(2(0)) [—% /Otdwl(u)]

and

Z50(8) = 9(0)) = Ga(u(0), ' (0))z2(t)
= Viy (O + = [ Ha(y(u). v ()i
1 , el L [
+ = [ @atuw).v ()dus(u) - Ga(u(0). v )72 [ dwa(w],
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we have

1 2
Esup|—(z(t) = 2(0))(s) = G1(x(0))1(1)(s)
e oy g
+20 Esupl / G (2(u)) - Gl(:L'(O))]dwl(u)r

<2 [ Bt 2L [ Bi6 ) - 60
and
Bsup| Z2(u(t) = 1(0))(s) = Ga(u(0), ¥’ (O)=a(8)s)|
@) <2EOF) +4 [ ElHa(u(), v (w)
+ 25 [ BIGa(w),v'(w) - Ga(at0), ¥ (0) P

for some constants M, N > 0.
But it follows from the Hypotheses (1) that

E|H (z(1))* < 2|H1(z(0)))?, E|H2(y(t),y'(1))|” < 2|Ha2(¥(0),¥'(0))/?
and

Jim B|Gy(2(t)) — Gi(=(0))]|* = 0.
Jm BllGa(y(2),y'(1) — G2(y(0), 4" (0)|I* = 0.

Therefore letting ¢ — 0+ in (1) and (2), we obtain the results.

We conclude with:
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COROLLARY 4. Let g be a continuous bilinear form on C(J,R").
Then

i, [7Bo(a(t) = 2(0),y(8) - (0)
~ Eg(G1(2(0)=1 (1), Ga(y(0), ¥'(0))z2(t)] = 0.
Proof. Since g is bilinear, we write
Zg(a(t) = 2(0),y(t) - 9(0)) ~ 9(G1(2(0))=1 (1), Ga(u(0), ¥ ()= (1)
= o( )~ =(0) - GO,
270 = 4(0) = Ga(u(0), ¥ (©)za(1)
+9(Z5(e(t) = 2(0)) ~ G1(2(0)=1(1), Gau(0), ' O)a®)

+9(G1(2(0)z1(2), \/%(y(t) —y(0)) = G2(y(0),¥'(0))z2(1))-

By the continuity of g, we obtain
(3)

|3 Bg(=(t) - 2(0),u(d) = ¥(0)) = 9(G1 (=(0)=1(1), G (w(0), ¥ O) 224D
< lgll2 {[| Z2(a(0) = 20)) = Ga(e oD (0
]' 1]
|55t - o) - Gatato) ' Oz2(0)
+ ligl [EH\/%(z(t) ~2(0)) - Gl(m(O))zl(t)”z} ? [BIIG ((0), ¥ (0)z(1)]17] ?
+ gl [E] 3500 - 50) - G200). )| (ElIG O 01T
But it follows that
1
E||Gi(z(0)=1(DI* < - E Sup wi(t) — w1 (0)*(s)l|G1 (=(O)II*

< |IG1(z ()]}
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and

E||G2(y(0),y'(0))z2(t)|1?

:Eaeslug Jw2(t) — w2(0)*(5)[1G2(y(0), ' (ODII* < 1IG2(v(0),4'(0))]>

Therefore letting t — 0+ in (3), the result follows from the Theorem 3.
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