• Title/Summary/Keyword: $\eta$-Einstein manifold

Search Result 44, Processing Time 0.023 seconds

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Mondal, Chandan Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1279-1287
    • /
    • 2019
  • The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.

RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

  • Patra, Dhriti Sundar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a ${\eta}$-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is ${\eta}$-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ${\xi}$.

PARA-KENMOTSU METRIC AS A 𝜂-RICCI SOLITON

  • Kundu, Satyabrota
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.445-453
    • /
    • 2021
  • The purpose of the paper is to study of Para-Kenmotsu metric as a 𝜂-Ricci soliton. The paper is organized as follows: • If an 𝜂-Einstein para-Kenmotsu metric represents an 𝜂-Ricci soliton with flow vector field V, then it is Einstein with constant scalar curvature r = -2n(2n + 1). • If a para-Kenmotsu metric g represents an 𝜂-Ricci soliton with the flow vector field V being an infinitesimal paracontact transformation, then V is strict and the manifold is an Einstein manifold with constant scalar curvature r = -2n(2n + 1). • If a para-Kenmotsu metric g represents an 𝜂-Ricci soliton with non-zero flow vector field V being collinear with 𝜉, then the manifold is an Einstein manifold with constant scalar curvature r = -2n(2n + 1). Finally, we cited few examples to illustrate the results obtained.

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

A (k, µ)-CONTACT METRIC MANIFOLD AS AN η-EINSTEIN SOLITON

  • Arup Kumar Mallick;Arindam Bhattacharyya
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.315-328
    • /
    • 2024
  • The aim of the paper is to study an η-Einstein soliton on (2n + 1)-dimensional (k, µ)-contact metric manifold. At first, we establish various results related to (2n + 1)-dimensional (k, µ)-contact metric manifold that exhibit an η-Einstein soliton. Next we study some curvature conditions admitting an η-Einstein soliton on (2n+1)-dimensional (k, µ)-contact metric manifold. Furthermore, we consider specific conditions associated with an η-Einstein soliton on (2n+1)-dimensional (2n+1)-dimensional (k, µ)-contact metric manifold. Finally, we show the existance of an η-Einstein soliton on (k, µ)-contact metric manifold.

ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • De, Uday Chand;De, Krishnendu
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.795-808
    • /
    • 2012
  • The object of the present paper is to study 3-dimensional trans-Sasakian manifolds with conservative curvature tensor and also 3-dimensional conformally flat trans-Sasakian manifolds. Next we consider compact connected $\eta$-Einstein 3-dimensional trans-Sasakian manifolds. Finally, an example of a 3-dimensional trans-Sasakian manifold is given, which verifies our results.

NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII

  • Park, Jeong-Hyeong;Sekigawa, Kouei
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1255-1265
    • /
    • 2009
  • We show that the Riemannian geometry of a tangent sphere bundle of a Riemannian manifold (M, g) of constant radius $\gamma$ reduces essentially to the one of unit tangent sphere bundle of a Riemannian manifold equipped with the respective induced Sasaki metrics. Further, we provide some applications of this theorem on the $\eta$-Einstein tangent sphere bundles and certain related topics to the tangent sphere bundles.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

𝜂-Einstein Solitons on (𝜀)-Kenmotsu Manifolds

  • Siddiqi, Mohd Danish;Chaubey, Sudhakar Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.805-819
    • /
    • 2020
  • The objective of this study is to investigate 𝜂-Einstein solitons on (𝜀)-Kenmotsu manifolds when the Weyl-conformal curvature tensor satisfies some geometric properties such as being flat, semi-symmetric and Einstein semi-symmetric. Here, we discuss the properties of 𝜂-Einstein solitons on 𝜑-symmetric (𝜀)-Kenmotsu manifolds.