• Title/Summary/Keyword: $\alpha$-n-norm

Search Result 17, Processing Time 0.033 seconds

THE RIESZ THEOREM IN FUZZY n-NORMED LINEAR SPACES

  • Kavikumar, J.;Jun, Young-Bae;Khamis, Azme
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.541-555
    • /
    • 2009
  • The primary purpose of this paper is to prove the fuzzy version of Riesz theorem in n-normed linear space as a generalization of linear n-normed space. Also we study some properties of fuzzy n-norm and introduce a concept of fuzzy anti n-norm.

  • PDF

FUZZY n-INNER PRODUCT SPACE

  • Vijayabalaji, Srinivasan;Thillaigovindan, Natesan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.447-459
    • /
    • 2007
  • The purpose of this paper is to introduce the notion of fuzzy n-inner product space. Ascending family of quasi ${\alpha}$-n-norms corresponding to fuzzy quasi n-norm is introduced and we provide some results on it.

HOLOMORPHIC FUNCTIONS ON THE MIXED NORM SPACES ON THE POLYDISC

  • Stevic, Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.63-78
    • /
    • 2008
  • We generalize several integral inequalities for analytic functions on the open unit polydisc $U^n={\{}z{\in}C^n||zj|<1,\;j=1,...,n{\}}$. It is shown that if a holomorphic function on $U^n$ belongs to the mixed norm space $A_{\vec{\omega}}^{p,q}(U^n)$, where ${\omega}_j(\cdot)$,j=1,...,n, are admissible weights, then all weighted derivations of order $|k|$ (with positive orders of derivations) belong to a related mixed norm space. The converse of the result is proved when, p, q ${\in}\;[1,\;{\infty})$ and when the order is equal to one. The equivalence of these conditions is given for all p, q ${\in}\;(0,\;{\infty})$ if ${\omega}_j(z_j)=(1-|z_j|^2)^{{\alpha}j},\;{\alpha}_j>-1$, j=1,...,n (the classical weights.) The main results here improve our results in Z. Anal. Anwendungen 23 (3) (2004), no. 3, 577-587 and Z. Anal. Anwendungen 23 (2004), no. 4, 775-782.

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

A GENERALIZATION OF A RESULT OF CHOA ON ANALYTIC FUNCTIONS WITH HADAMARD GAPS

  • Stevic Stevo
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.579-591
    • /
    • 2006
  • In this paper we obtain a sufficient and necessary condition for an analytic function f on the unit ball B with Hadamard gaps, that is, for $f(z)\;=\;{\sum}^{\infty}_{k=1}\;P_{nk}(z)$ (the homogeneous polynomial expansion of f) satisfying $n_{k+1}/n_{k}{\ge}{\lambda}>1$ for all $k\;{\in}\;N$, to belong to the weighted Bergman space $$A^p_{\alpha}(B)\;=\;\{f{\mid}{\int}_{B}{\mid}f(z){\mid}^{p}(1-{\mid}z{\mid}^2)^{\alpha}dV(z) < {\infty},\;f{\in}H(B)\}$$. We find a growth estimate for the integral mean $$\({\int}_{{\partial}B}{\mid}f(r{\zeta}){\mid}^pd{\sigma}({\zeta})\)^{1/p}$$, and an estimate for the point evaluations in this class of functions. Similar results on the mixed norm space $H_{p,q,{\alpha}$(B) and weighted Bergman space on polydisc $A^p_{^{\to}_{\alpha}}(U^n)$ are also given.

HARMONIC CONJUGATES OF WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Nam, Kye-Sook;Yi, Heung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.449-457
    • /
    • 2003
  • On the setting of the upper half-space of the Euclidean space $R^{n}$, we show that to each weighted harmonic Bergman function $u\;\epsilon\;b^p_{\alpha}$, there corresponds a unique conjugate system ($upsilon$_1,…, $upsilon_{n-1}$) of u satisfying $upsilon_j{\epsilon}\;b^p_{\alpha}$ with an appropriate norm bound.

BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

  • Jaesung Lee
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.305-311
    • /
    • 2023
  • We exhibit some properties of the weighted Berezin transform Tαf on L(Bn) and on L1(Bn). As the main result, we prove that if f ∈ L(Bn) with limk→∞ Tkαf exists, then there exist unique M-harmonic function g and $h{\in}{\bar{(I-T_{\alpha})L^{\infty}(B_n)}}$ such that f = g + h. We also show that of the norm of weighted Berezin operator Tα on L1(Bn, ν) converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.

CHARACTERIZATIONS FOR THE FOCK-TYPE SPACES

  • Cho, Hong Rae;Ha, Jeong Min;Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.745-756
    • /
    • 2019
  • We obtain Lipschitz type characterization and double integral characterization for Fock-type spaces with the norm $${\parallel}f{\parallel}^p_{F^p_{m,{\alpha},t}}\;=\;{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{C}}^n}}\;{\left|{f(z){e^{-{\alpha}}{\mid}z{\mid}^m}}\right|^p}\;{\frac{dV(z)}{(1+{\mid}z{\mid})^t}}$$, where ${\alpha}>0$, $t{\in}{\mathbb{R}}$, and $m{\in}\mathbb{N}$. The results of this paper are the extensions of the classical weighted Fock space $F^p_{2,{\alpha},t}$.