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ABSTRACT. The primary purpose of this paper is to prove the fuzzy ver-
sion of Riesz theorem in n-normed linear space as a generalization of linear
n-normed space. Also we study some properties of fuzzy n-norm and in-
troduce a concept of fuzzy anti n-norm.
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1. Introduction

Gahler [4] introduced the theory of n-norm on a linear space. Following
Gunawan and Mashadi [5], Kim and Cho [6], Malceski [8] and Misiak [9] devel-
oped the theory of n-normed space. A detailed theory of fuzzy normed linear
space can be found in [1, 2, 3, 7, 12]. Narayanan and Vijayabalaji [10] intro-
duced the concept of fuzzy n-norm on a linear space and Also, Vijayabalaji and
Thillaigovindan [14] introduced the concept of complete fuzzy n-normed linear
space. Riesz [13] obtained the Riesz theorem in a normed space. Park and
Chu [11] have extended the Riesz theorem in a normed space to n-normed linear
space. In this paper, we extend the Riesz theorem in m-normed linear space to
the case of fuzzy n-normed linear space and establish some results on it.

2. Preliminaries

Riesz [13] obtained the following theorem in a normed space

Theorem 1. Let Y and Z be subspaces of a normed space X and Y a closed
proper subset of Z. For each 6 € (0, 1), there exists an element z € Z such that

Iz l=1, l2—yll=0
forallyeY.
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Definition 1. [5]. Let n € N (natural numbers) and X be a real linear space
of dimension d > n. (Here we allow d to be infinite). A real valued function
| @ @---,8lon X x X x..x X (n times)=X" satisfying the following four
properties:

(N1} || z1, 22, ---, Tp ||= 0 if and only if 21, xa, ..., T are linearly dependent.

(N2) || #1, 22, ..., 2y, || is invariant under any permutation of zy, zg, ..., Tp.

(N3) | z1, 22, ..., cxn |= | ¢ | || 71,32, ..., T ||, for any real c.

(N4) ” 1,22,y Tn—1, Y + 2 “ < “ L1, T2,y Tn—-1Y ” + ” T1,225 -y Tn—1, 2 ”
is called an n-norm on X and the pair (X, | e,...,¢ ||} is called an n-normed
linear space.

Definition 2. [5]. A sequence {z,} in a linear n-normed space (X, || o,...,e )
is said to n-convergent to x € X and denoted by zx — x as k — oo if

lim || z1,22,...,Zn-1,Zn — 2 ||=0
k-0

From the above definitions, Park and Chu [11] obtained the following theorem
in a m-normed spaces.

Theorem 2. Let Y and Z be subspaces of a linear n-normed space X and Y
an n-compact proper subset of Z with codimension greater than n - 1. For each
0 € (0,1), there exists an element (21, 22, ..., 2,) € Z™ such that

n 214522y «ev5 2n “: 17 H 21— Y, 22 —Y,-s2n —Y ”Z 0
forallyeY.
Definition 3. [14]. A binary operation *: [0,1] x [0,1] — [0,1] is called a
continuous #-norm if * satisfies the following conditions:
: (1) * is commutative and associative
: (2) * is continuous
Definition 4. [15]. Let X be a linear space over a real field F. A fuzzy subset
N of X™ x [0,00) is called a fuzzy n-norm on X if and only if:
(FN1) N(z1,22,...,Zn, t) > 0.
(FN2) N(z1,22,...,Zn,t) = 1 & 11, T2, ..., T, are linearly dependent.
(FN3) N(z1,z2, ..., Zn, t) is invariant under any permutation of z1,z2, ..., Zn.
(FN4) N(z1,z2,...,cTn, t) = N(x1, %2, ..., Tn, %) if ¢ # 0, c € F(field)
(FN5) N(xy, %2, ..., Cn+x), 8+1) > N(21, 22, ..., Tn, t) x N(21, T2, ..., 2, t) for
all s,t €R
(FN6) N(z1, 22, ..., Zn, -) is left continuous and non-decreasing function of R
such that
lim N(z1,22,...,2n0,t) =1
t—r00
Then (X, N) is called a fuzzy n-normed linear space.

Definition 5. [15]. A sequence {z,} in a fuzzy n-normed space (X, N) is said
to converge to x if given r > 0, £ > 0, 0 < r < 1, there exists an integer ng € N
such that N(zy, 2, ..., Zp—1,Tn — x,t) > 1 — 7 for all n > ng.
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3. Fuzzy anti n-normed spaces and a-n-normed spaces

Theorem 3. Let (X, N) be a fuzzy n-normed space. Assume the condition that
(FN7) N(x1,Z2,...;Tn,t) > 0 for all t > 0 implies 1,22, ..., T, are linearly
dependent. Define || x1,%2,...,2Tn |la= inf{t : N(z1,22,....,Zn,t) > a},a €
(0,1). Then {|| e,e,...,0 |lo: @ € (0,1)} is an ascending family of n-norms on X.
These n-norms are called oo —n—mnorms on X corresponding to the fuzzy n-norm
on X.

Proof. (1) || z1,%2, .-, %n |a= 0. This (i) implies inf{t : N(z1, z2, ..., Tn, t) >
al =0,

(ii) implies, for all t €R,, t > 0, N(x1, T2, ..., Tn, t) > @ > 0, € (0,1),

(iii) implies, by (FNT7), x1, ..., Z,, are linearly dependent. Conversely, assume
that x1, a2, ..., T, are linearly dependent. This

(i) implies, by (FN2), N(z1,za, ..., Zn,t) = 1 for all t > 0.

(ii) implies, for all « € (0, 1), inf{¢ : N(z1,z2,...,Zn,t) > a} =0

(iii) implies || 1, z2, ..., Tp [la=0

(2) As N(z1,Z2,...,Tn,t) is invariant under any permutation, it follows that

|| z1, %2, ..., Zn ||o is invariant under any permutation.
(3) If ¢ # 0, then

| 1,2, ..., cxpn {lo = inf{s : N(z1, 22, ..., CTn, 8) > a}
=inf{s: N(z1,%2, ..., Tn, |—Sc—) > a}
Let t =5/ | c|, then
| 21,22, ..., cxn ||l = Inf{| c | t : N(z1,22, ..., Zn,t) > a}
=| ¢ |inf{t: N(z1, 22, ..., Tpn,t) > a}
=le|inf || z1,22,..., Tn ||a
If ¢ =0, then
| 21,22, ..., cTp |l =|| T1,Z25 -+, 0 ||
=0=0] 21,22, -+, Tn, ||
=|c|inf | z1, %2, ..., Zn |la, Ve € F
A) || z1, 22, oy Zn la + || 1, T2, o Ty |l
=inf{t: N(z1, 22, ..., T, t) > a} + inf{s: N(z1, z2, ...,m/n, s) > a}
=inf{t+ s : N(z1,Z2, ..., Tn, t) > a, N(z1, 22, ...,a:/n, s) > a}
—inf{t +s: N(z1, 20, ..., Tn+ ., t+ 8) > a}
= inf{r : N(z1, z2, ...,xn+x/n,r) >al,r=t+s

=|| 1, T2 s Tnt T o -

Therefore, || x1, z2, ...,xn—i-a:;l o=l z1, 22,y ooy Zn o + | T1, %2, Ty ||a- Thus,
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{lIl »,e,...;0lo: @€ (0,1)} is an &« — n—norm on X.
(5) Let 0 < oy < cva. Then

| z1, 22, ..., Tn o= inf{t : N(z1, 22, ..., %0, t) > a1}

| 21,22, ., Tn |ap= inf{t : N(z1,23, ..., Zn, t) > a2}
As oy < ag,

{t : N(xl,fL'Q, ooy Ty t) > 042} C {t : N(mtha ooy Ty t) > al}
inf{t: N(z1,22, ..., Tn,t) > g} > inf{t : N(z1,22,..., Tn,t) > 1}
which implies
II L1y X2y ey Ty ”azZ” L1, X2, .0, Ty “cn

Hence, {|| »,e,...,8]|4: @ € (0,1)} is an ascending family of & — n—norms on X
corresponding to the fuzzy n—norm on X. O

Theorem 4. Let {|| o,0,...,0 ||,: a € (0,1)} be an ascending family of o —
n—norms on X corresponding to the fuzzy n-norm on X. Define a function N’
: X"xR—[0,1] as

sup{a € (0,1} ;|| z1,....,%n |a< t}

when x1, Tg, ..., Ty are linearly

independent and t # 0

0 otherwise

N (zy, 22, ..., Tp,t) =

fori=1,2,...,n. Then (X,N") is a fuzzy n-normed linear space.

Proof. (FN1) For all ¢t €R with ¢ < 0 we have

N{z1, 22, ..., 2, t)=sup{a € (0,1) :|| z1,Z2, - ,Zpn [l«a< t} = OVz € X. Simi-
larly for ¢ = 0 and = #0, N(z1,z2,...,Zn,t) = 0. When = 0 and £ = 0 then
from definition N(z1, g, ..., Zn,t) = 0. Thus Vt €R with t < 0, N(z1, 22, ..., Zn,
t)=0Vz € X. So (FN1) holds.

(FN2) Let vt €R with £ > 0, we have N(xy,%2,...,Tn,t) = 1. Choose € €
(0,1). Then for any t > 0, 3oy € (g,1) such that | z1,22, -+ ,%n o< 8,
and hence || xy, 29, -, 2, |[|e< £ Since ¢ > 0 is arbitrary, this implies that
| z1,x2, -+, &pn lle= 0. Hence z1,xy, ..., T, are linearly dependent. Conversely,
if 1,22, ...,z, are linearly dependent, V¢ €R with ¢ > 0, N'(:cl,arg,...,xn, t)
=sup {a :|| ¢1,%2,....Zn [|a< t} = sup {@: a € (0,1)}=1. Thus for all ¢t > 0,
N’(:L‘l,xg, ey Ty t)=1 if and only if x4, 23, ..., 2, are linearly dependent.

(FN3) As || z1,...,Zn ||lo is invariant under any permutation of z, .., Z, 80
we have N’ (21, .., Tn, t) is invariant under any permutation of zy, ..., Zp.

(FN4) For all t eR with t >0, c€ F,

N (z1,T2, ..., cxp, t) = sup{a || z1, 22, ..., cTp ||o< t}

t
= SUP{CY n X1,%2, .., Tn ”ag m}

7
t
= N (1151, Ly veny Ly -I—Z-I)



The Riesz Theorem in Fuzzy n-Normed Linear Spaces 545

(FN5) We have to show that for all s,t €R,
N/(:vl,xg, ey T+ x;, s+t) > N/(xl, Xy ey Ty L) X N’ (21, Z2, ...,x/n, t).
If (@) s+t <0()s=1t=0s>0,t<0;s < 0,t£ >0, then in these
cases the relation is obvious. If (d) s > 0, t > 0, let p = N(z1,22,...,Zn, S),
q= N/(J'Jl,ﬂ?g, ...,:v/n, t) and p < ¢. If p = 0 and ¢ = 0 then obviously (FN5)
holds.

Let 0 < r < p < q. Then there exists a > r such that || 21,22, ...,Zn [[a< s
and there exists 8 > 7 such that || z1, 22, ...,z [[a< t

Let v = a* S8=min{a, 8} > 7. Thus || z1, T2, ..., Zn {|+<|| T1, 22, o, Tn o< 8
and || 21,z ..., T, Iy <|| 1, 22, o o< 5
Now || xl,mg,...,xnﬂ—x; <l 1,22, ;@0 la + || 1,22,y 20 o< s + L.
Therefore N/(.Tl,l‘g, ey T+ m/n, §+t) >y >r. Since 0 < r < vy is arbitrary,

’ 1

N,(arl,xz,...,:vnﬂLx;b,s—i-t) >p= min{N/(xl,a:Q,...,mn, $), N (z1,%2, ..., T, )}

b ne

= N, (£17 T2, ...y Tn, 8) * N/(xla T2y onny :E/na t)
Similarly if p > ¢, then also the relation holds. Thus

’ ’

/ ’ ’
N (.’El,$27...,$n+$n,8+t) > N (x17x25"'7$n7 S) * N ('7"173:27""In’ t)

(FN6) Let (z1,22,..,Zn) € X™ and o € (0,1). Now t >|| z1,Z2,...,Zn |a
which implies that

’

N (21,22, ey Tny t) = sup{ B :|| 1,22, ..., Tn |3t} >

So, lim;_, o Nl(l‘l,l‘g, ey By ) = 1.

If t1 < t2 <0, then N/(xl,xg,...,xn,tl) = Nl(arl,azg,...,xn,tg) = 0 for all
(21,29, ...,zn) € X™.

If to > t1 > 0, then

{Of || L1, L2y 00y Ty ||Oé§ tl} - {a || L1, X2y -y Tp Hag t2}
= Sup{a || I1,$2, “'7x’ﬂ ||0¢S tl} S sup{a “ iUl,SUQ, ...,fL’n “aS t2}

=N (1’1,152, ...,ZL‘n,tl) < Nl(.'tl,ﬂcg, s Ty tg).

Thus N’ (1, T2, ..., Tn, ) is a non decreasing function of ¢ €R. Hence (X, N') is
a fuzzy m-normed linear space. a

Remark 1. In theorem 5, given below, we show that if the index set (0,1) of
the family of crisp n-norms {|| e, e, ..., |/4: @ € (0,1)} of theorem 4 is extended
to (0,1] then a fuzzy n-norm N is generated, satisfying an additional property
that N(z1, 22, ..., Zn, .) attains the value 1 at some finite value .

Theorem 5. Let {|| o,0,....0 |l,: a € (0,1]} be an ascending family of o —
n—norms on X corresponding to the fuzzy n-norm on X. Define a function
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N:X"xR—[0,1] as

sup{a € (0, 1] :|| 21, ..., Zn [« < E}
when 1, X2, ..., Ly are linearly
independent and t £ 0

0 otherwise

N (21,22, ...; Tn,t) =

fori=1,2,...,n. Then (a) (X,N') is a fuzzy n-normed linear space.
(b) for each (1,22, ...,x,) € X™, there exists t > 0 such that N(x1,22,..., Tn,
s)=1, forall s > t.

Proof. (a) First we prove that N is a fuzzy n-norm on X,

(FN1) For all ¢ €R with t < 0 we have N(z1,z2, ..., Tpn, t)=sup{a € (0,1] ||
X1, X2, y&n ||a§ t} =0z e X.

Similarly for ¢t = 0 and z #0, N(z1,%2,...,Tn,t) = 0. When z = 0 and
t = 0 then from definition N(zy,23,...,&n,t) = 0. Thus ¥Vt R with t < 0,
N(z1,22,...,2n, t) = 0 Vz € X. So (FN1) holds.

(FN2) Let vt €R with ¢ > 0, we have N(z1,T2,...,Zn,t) = 1. Choose € €
(0,1]. Then for any ¢ > 0, Ja; € (g,1) such that || z1,22, - ,Zn [la< ¢,
and hence || z1,z9, -+, %, {|.< t. Since t > 0 is arbitrary, this implies that
| 1,22, -+ ,Zp lle= 0. Hence z, g, ..., T, are linearly dependent. Conversely,
if z1,xs, ..., 2, are linearly dependent, V¢ €R with £ > 0, N’(zl,m,...,xn, t)
=sup {a :|| #1,22, ..., ZTn |«< t} = sup {a : a € (0,1]}=1. Thus for all ¢ > 0,
N (21,22, ..., Tp, t)=1 if and only if z1, Z2, ..., Z, are linearly dependent.

(FN3) As || #1,-.., Zn ||lo is invariant under any permutation of z1, .., Zn, s0
we have N’ (21, .--s Tn, t) is invariant under any permutation of i, ..., Zn.

(FN4) For allt eR with ¢ > 0,c € F,

N' (21,22, ..., CTn, t) = sup{c N1, 22,y Ty o< B}
t
= sup{a :|| 1,22, ..., T, [|a< l——c—'}
4

Tel”

’
=N (.’E],(I}g, vy Ly

(FN5) We have to show that for all 5,t €R,

Nf(ZL'l,[L'Q, ooy Ty + x;,, s+1t) > Nl(;vl, T2y ey Ty T) * N!(xl,:cg, ey x;, t)
Ifa) s+t<0(b)s=1t=0;8>0,t<0;s<0,t>0, then in these cases the
relation is obvious.

If(d)s>0,t>0,let p=N(z1,29,...,%n,8), ¢ = N'(zy,29,...,x,,t) and p < q.
If p =0 and ¢ = 0 then obviously (FN5) holds.

Let 0 < 7 < p < ¢. Then there exists a > r such that || 21,22, ..., Ty [lo < s and
there exists 8 > r such that || 21,22, ..., %, ||« < t Let v = a * f=min{a, 8} >
r. Thus || z1,22,....%n <[ #1,22,..., 20 [o«< s and || 1,22, sy 4 <]
T1, D2y ey Ty o< t . Now || 1,22, 8n + Ty o<l 21,2250, Tn o + ]
L1, 22, e, T |o < 8+t Therefore N/(xl,x% ey T F a:;t, s+t)>y>r.
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Since 0 < r < v is arbitrary,
N (z1, 22, ..., Tntx,, s+t) > p=min{N (21, T2, ..., Tn, $), N (T1, %2, ..., T, t)} =
N (21,22, .., Tn, 8)* N (21, T2, ..., T, t). Similarly if p > ¢, then also the relation
holds. Thus N,(Ilfl,iﬁz, ...,a:n+:cln,s+t) > N,(:vl,xg,...,a:n, 8)xN (21, %2, oy Ty, t)
(FN6) Let (z1,z2,..,2,) € X™ and @ € (0,1]. Now t >| z1,22,....,Zn ||la
which implies that N/(acl,a:g, vy Ty t) =sup {8 || T1, T2, ..., Zn ||p< t} > . So,
lithOON,(xl,mg,..,,:L’n,t) =1. If ;1 < to < 0, then N/(wl,:ﬂz,...,a:n,tl) =
N/(:rl,xg, ey Ty t2) =0 for all (x1,x9,...,2,) € X™. If tg > t1 > 0, then
{a:]z, 20, tn o<t} C{a:]| 21,22, 0, T o< 2}
= sup{a || T1, T2, oy T |« < t1} < sup{a:f T1, 2, o Tn [l < L2}
=N (l‘l,ZL‘Q, ...,iL‘n,tl) < N/(.Z'l,.]ﬁg, ceey Ty t2).
Thus N' (1, %2, ..., Tn, t) is a non decreasing function of t €R. Hence (X, N')is
a fuzzy n-normed linear space.
(b) For (x1,22,...,2n) € X, Define || z1, T2, ..., Zn |1 and hence there exists
t > 0 such that || 21,29, ...,2, 1< ¢
So, Ni(x1, Z2, ..., Tn, t) = sup{a € (0,1] ;|| 1,22, ..., Zn 1<t} = 1. O

Remark 2. Assume further that for xi,xs,...,z, are linearly independent,
(FN8) N(z1, 2, ..., Zn, t) is a continuous function of ¢ €R (R-set of real num-
bers) and strictly increasing in the subset {t : 0 < N(z1,2,...,Tn,t) < 1} of
R.

Definition 6. Let X be a linear space over a real field F. A fuzzy subset N*
of X™ x [0, 00) is called a fuzzy anti n-norm on X if and only if:

(FN*1) for all t eR with t <0, N*(zy1, 9, ..., Tn, t) = 1.

(FN*2) for all ¢ €R with ¢t > 0, N*(z1, %2, ..., Tn,t) = 0 & z1,22, ..., T, are
linearly dependent.

(FN*3) N*(x1, 2, ..., Tn, t) is invariant under any permutation of 1, g, ..., Zn.

(FN*4) for all ¢t €R with t > 0, N*(x1, %2, ..., CTn, t) = N* (21,22, ..., Tp, ﬁ)
if ¢ # 0, c € F(field)

(FN*3) for all s,t €R,

N*(@1,%2, ey Tn + 0y, 8 + 1) < max{N*(zy1, T2, ..., Tn, 8), N*(z1, T2, ..., T, ) }

(FN*6) N*(z1, %2, ..., Tn, ) is right continuous and non-increasing function of
R such that

tlim N*(z1,x2,...,2n) = 0.
Then (X, N*) is called a fuzzy anti n-normed linear space.
To strengthen the above definition, we present the following example.

Example 1. Let (X, | o,e,--- o) be a n-normed linear space
Define,

1 -

. when t(> 0) € R,V e X
N (.Ill,xg,...,l'n,t):{ 1 ( )

when (< 0) € R,Vx € X
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Then (X, N*) is a fuzzy anti n-normed linear space.

Theorem 6. N* is a fuzzy anti n-norm on X if and only if (1 — N*) is a fuzzy
n-norm on X.

Proof. Let (X, N*) is a fuzzy anti n-norm on X.
(FN*1) < Vt € R with £ < 0, N*(z1, 22, ..., Zn,t) = 1
<1 - N"(21,Z2y00y Ty t) =1—1
& 1— N*(z3,z3, ..., Tn,t) = 0 & (FN1) holds.

(FN*2)& If 1,22, ..., &, are linearly dependent on (X, N*) «for all ¢t €R
with t > 0, N*(IEl,.’ZIQ,...,LL‘n, t) =0 & 1 N*(.’El,wg,...,.’l]mt) =1-0&
1— N*(z1,22,...,;Tn, t) = 1 & if 2,2, ..., T, are linearly dependent on (X,1 —
N*) &{FN2) holds.

(FN*3)< N*(x1, %2, .., Tn, t) is invariant under any permutation of xy, za, ...,
Ty & 1 — N*(z1,22, ..., Bn, t) is invariant under any permutation of 1, g, ..., Tn,
< (FN3) holds. Clearly (FN*4 )< (FN4).

(FN*5)< for all s,t €R,

N*(zy, 22, ..., Tn + x},, 8 + 1) < max{N*(zy1, T2, ..., Tn, 8), N*(z1, T2, ..., Tpp, ) }

& 1—-N*(zy,22,...,Ta+ 2,8+ 1)

> 1 —max{N*(z1,Z2, ..., Tn, 8), N*(21, T2, ..., T, ) }

=min{l — N*(z1,Z2,...,Zn, 8), 1 — N*(z1, T2, ..., T}, t}} & (FN*5) holds.
(FN*6) N*(z1,22, ..., Zn, ) i a non-increasing function of R& if ¢y < t; <1

then, N*(xl,xg, ...,CIJn,tl) > N*($1,$2, ceey Ty tg) &1 - N*(Il,ivz, ...,.’L‘mtl) <

1—-N*{(z1, 23, ..., En, ta) which implies that t2 > t; > 0 & 1 - N*(z1,22, ..., Tn, *)

is a non-decreasing function of R. a

Theorem 7. Let (X, N*) be a fuzzy anti n-normed space. Assume the condi-
tion that (FN*7) N*(z1,22,...,&n,t) < 1 for all t > 0 implies 1,2, ..., Ty are
linearly dependent. Define || 1,%a,.... % |5 = inf {t > 0: N(x1, 22, ..., Tn, t) <
atb,a € (0,1]. Then {|] o,e,...,® ||%: @ € (0,1)} is a descending family of n-
norms on X. These n-norms are called oo — n—mnorms on X corresponding to
the fuzzy anti n-norm on X.

Proof. (1) || z1, 22, ..., Zx |5> 0, for all @ € (0,1] and (21,22, ..., z,) € X™.
(2) || #1,22, .-y Tp %= 0. This
(i) implies inf {t > 0: N*(z1, 22, ..., Tn, t) < a} =0,
(ii) implies, for all t €R, ¢ > 0, N*(z1, Z2, ..., Zn,t) < a < 1,a € (0,1],
(iit) implies, by (FN*7), z1, ..., z,, are linearly dependent.
Conversely, assume that x1, z2, ..., x,, are linearly dependent. This
(i) implies, by (FN*2), N*(z1, 2, ..., Tn,t) = 0 V¢ > 0.
(ii) implies, for all @ € (0,1], inf{t > 0: N*(z1, 22, ..., Tn,t) < a} =0
(iii) implies || 1, Z2, ..., Za ||5= 0.
As N*(z1,x2,...,%p,t) is invariant under any permutation, it follows that ||
Z1, L2, ..., Ty || I8 invariant under any permutation.
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(3) If ¢ # 0, then
| 1,22, ..., cxn |5 = inf{t > 0: N(z1,2z2,...,cZn, ) < a}
s

=inf{t > 0: N(zy,0,..., Tn, T|) <a}

Let t = s/ | ¢|, then

| 1,22,y cp |5, = inf{| c | t: N(z1, 22, ..., Zn, t) < @}
=|c|inf{t > 0: N(z1, 22, ..., Zpn, t) < a}

=|c|inf || 21,22, ..., 2n ||}
If ¢ =0, then

|| L1, X2y 00y CTp ”Z :” Z1, T2, ’0 “z‘
=0=0 || T1,X2y -0y T ”:;

=|c|inf || #1,22,...,2, |5,V € F

(4) We have to show that

7 ’
| 21,22, oyt 2, |25 || 21,22, oy 2 |2+ || 1, 225 ooy 2y, ||5, Ve € (0, 1]

Now,

IV 1,22, .y n |5 + || @1, T2, ,x; = inf{t > 0: N*(x1,22,....,2n,t) < o} +
inf{s > 0: N*(z1, x2,..., 2, ) < a}

=inf{t+s>0: N(z1,22,.... Tn, t) < @, N(z1, T2, ...,:v;” s) < a}

=inf{t +s>0: N*(x1,22, ..., n + T, t + 8) < a}

=inf{r > 0: N*(2),2g,....an+,,7) <a),r=t+s

=|| 1, &2, .., Tn + 1z, ||7

Therefore, || 1, %2, ..., 2+, |5<|| 1,22, ..., 2o |15 + || @1, 2, .., 2, |73 Thus,
{l| o 0, .., 0|5 ac(0,1]}is an &« —n—norm on X. Obviously,

” L1,T2;5 .., Tn H:L;[Z” L1, 25 -5 Tp ”Zg

for g > a1 > 0. Thus, {|| e,e,....;8 ||%: a € (0,1]} is a descending family of
a - n—norms on X corresponding to the fuzzy anti n—norm on X. g

Theorem 8. Let {|| o,0,....0 ||*: o« € (0,1]} be a descending family of o —
n—mnorms on X corresponding to the fuzzy anti n-norm on X. Define a function
N : X"xR—[0,1] as

inf{o: € (0,1] :|f &1, ..., x40 |5t}

when x1, Ta, ..., T, are linearly independent and

t#0

1 otherwise

N (l‘l,l‘z, ...,.’En,t) =

Then (X, N I) is a fuzzy anti n-normed linear space.
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Proof. (FN1) For all t €R with ¢ < 0 we have N'(z1, 22, ..., n, t)=inf{a €
0,1] )} 1,20, ..yzn h< t} = 1 Vo € X. Similarly for t = 0 and =z #0,
N/(ml,a:z, ey Eyt) = 1. When z = 0 and ¢t = 0 then from definition
N(z1,22,...,Zn,t) = 1. Thus Vt €R with t €0, N(z1,22,...,Zp,t) =1 Vz € X.
So (FN*1) holds.

(FN2) Let ¥t €R with ¢t > 0, we have N(zy,%2,...,Zn,t) = 0. Choose
g € (0,1]. Then for any ¢t > 0, Jay € (e, 1] such that || z1,z2,....,2n [ €,
and hence || z1,22,....,2n JI5< t. Since ¢ > 0 is arbitrary, this implies that
| 1,22, ..., 2n ||t= 1. Hence zj,29, ..., n are linearly dependent. Conversely,
if ¢1,2%9,..., 2, are linearly dependent, Vt €R with t > 0, N’(xh:cg,.‘.,xn, t)
=inf {a :|| 21,22, ..., zn ||5< t} = inf {a : @ € (0,1]}=0. Thus for all t > 0,
N’ (x1, 22, .., Ty, t)=0 if and only if z1, 2, ..., T, are linearly dependent.

(FN3) As || z1, ...,z ||% is invariant under any permutation of z1,.., %, S0

we have N’ (1, -.., Tn, t) 1s invariant under any permutation of x4, ..., Tp.
(FN4) For all t €R with ¢t >0,c€ F,

N'(z1, 22, ..., cTn, t) = inf{ax A 21, 22, o 02 RSt
. . t
= inf{a || 21, T2, ..., Tn |5 < m}

, t
=N 2y eeey Ty ™)
(z17$2 Zn ‘ c I)
(FN5) We have to show that for all s, €R,
N (z1, 22,y Tn + CL'/n,S—I- t) < max{N'(xl,mg, ey Iy 8)y N (21, 22, ...,xln, t)}.
If possible, suppose that

’ ’ ! 7 /
N (z1,%2, ..., Tn + 2, s + t) > max{N (z1,22, ..., T, 8), N (x1,Z2, ..., 2, 1)}
Choose k such that
Nz, z2, ...,xn+:c;l, s+t) >k > max{N,(xl,acg, s Ty 8), N (21, T2, ey Ty B) )

Now N’(.'L'l,.’lfz, ey Ty +;1:;L,s +t) >k

= inf {a € (0,1] :|| 21, 22y o0, Tn + 2, |5< s+ 8} > k-

= ” T1,L2y oy Ty + .’I?;l “Z> s+ t.

= || 21, %2, o0y T |5+ || 21, 22, 0y, 3> 5+

Again k > max{N'(a:l,:L'z, veey Ty §), ]\{’(581,332, ...,a;','n, 6}

= k>N (z1,%2,...,Zn,8) and k > N (z1,%2, ..., 2, )

= || 21,22, ..., Tn [|1< 5 and || 21, z2, ,:nln flr<t

= || 21, 2, . 20 || + | 21, 22, ,gc;l i< s+t

Thus s+t <|| 1,22, ..., Tn ||} + || 1,22, e T, h<s+t

a contradiction.

Hence N' (1,22, ..., Tn + x,,s5+1t) gma,x{Nl(ml, oy Ty 8), N (21, s :c;l, t)}.
(FN6) Let (z1,22,...%n) € X™ and a € (0,1]. Now t >|| z1,%2, ..., %0 ||}

which imples that N/(.’Bl,.’tg, vees Xy ) =inf {B:]] 21,22, ..., Tn H:,;g t} < a.
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So, limy o0 N/(acl,a:g, vy Zny t) = 0. If ) < t3 < 0 then N/(xl,acg, ey Ty t1) =
Nl(xl,xg,...,xn,tg) = 0 for all (z1,22,...,2y) € X" It to > t; > 0 then
{a:]| 21,22, ..y T o< t1} C {a ]| 1, @2y .oy Tp |0 < t2} which implies that

inf{o :|| x1, @0, .oy 2n 15< 01} > inf{e :l| 21, 22,..., 20 |5 < to} which implies
that N/({L‘l,.’tg,...,wn,tl) > Nl(xl,xg,...,xn, tz). Thus N,(xl,asg,...,xn,t) is a
non-increasing function of ¢ €R.. Hence (X, N ') is a fuzzy anti n-normed linear
space. |

4. Fuzzy Riesz theorem

Now we introduce the concept of fuzzy n-compact in a fuzzy n-normed linear
space.

Definition 7. A subset Y of a fuzzy n-normed linear space (X, V) is called an
fuzzy n-compact subset if for every sequence {y, } in Y, there exists a subsequence
{yn} of {yn} which converges to an element y € Y. In other words, given
t > 0,0 < r <1, there exists an integer ng € N such that

N1, Y25 s Yne1,Yny — Yo t/k) > 1 =1
for all n, k > ng and ng > ng.
Lemma 1. Let (X, N) be a fuzzy n-normed linear space. Assume that z; € X
for each i € {1,2,...,n} and c € F (Field). Then
N (1,22, ooy Tiy ooy Tj + CTiy ooy Ty £) = N(T1, T2, 00y Ty vy Ty vy Ty ).

Proof. N(x1,%2,..., T, ..., T; + CTi, ...,
_ t ot
= N(Z1, T2, ey Ty ooy T+ CLy ooy Ty 5+ 5)

=min{N(x1, 22, ..., Ti, .0, Tjy oo, Tryy
Since | ¢ |= 1, then
=min{N(z1, L2, ..., Tiy oy Tjy oo, Tny 5), N (&1, T2, o0y Tiy o0y Ty o0y Ty £}
SN(Z1, 82, ooy Tiy ooy Ty ooy Ty T) a
Theorem 9. Let (X, N) be a fuzzy n-normed linear space. If the
inf{t>0:N(z1 -y, 22— Y,.c,Zn — y, ) } =1
ycy

for (x1,....,z3) € X™ and Y is a fuzzy n-compact subset of X, then there exists
an element yo € Y such that

{t >0: N(Zlil — Yo, T2 —yOw“axn_yOvt)} =1

Proof. Let t > 0and e € (0,1). Choose r € (0,1) such that (1-r)x(1—r) > 1—e.
Since Y is a fuzzy m-compact subset of X, there exists an integer ng €N such
that

N(Z1 = Yk, T2 — Yky ooy Tn — Yk, L) > 1 —7
for all n, k > ng and c is a constant.
Since {yx} is a sequence in a fuzzy n-compact subset Y of X. Without loss of
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generality assume that {yx} is a converges to yp in ¥, as k — oo. Then for
given A, 0 < X < 1, there exists an integer n; €N such that

Nk = Yo, , Wa, ooy Wpy t) > 1= A,
for allw; € X(i =1,2,...,n) and ng > n;. For every r € (0,1), we can find a
A € (0,1) such that
™
(1=ANA(1=A)#k--x(l=N)>1—7

By Lemma 1, if ng > n1, then we have

t
N(x1—yo, %2 =~ Yos s T — Y0, 1) 2 N{(Yk = 40, T2 ~ Y05 > Tn — Y0, -};)
k— 1)t
*N('rl-yk7$2_y0""7xn—y0’( 2 ) )
t
> N(Yr — Y0, %2 — Yo, - Tn — Yo, E)
t
* N(Z1 — Yk, Y& — Y0, T3 — Y05 -+» T = Yo, E>
k—~2)¢t
*N(ml_y}mwQ-yk’$3”y07“'9xn_y03( L ) )
t
> N(Yr — Y0, T2 — Yo, -+, Tn — Yo, 75)
t
* N(&1 = Yr, Uk — Y0, T3 = Y05 -+s Tn = Y0s E)
t
* N(Z'l — Y&, T2 — Yk, Uk — Y0, -2 Tn — Y0, E)
k—3)t
* N(ib'x = Yy L2~ Yks L3 = Yk <oy T~ Y0, ( L )
t
> N(Wr — Y0, %2 — Yo, --» Tn — Y0, E)
t
* N(il'l = Yk: Yk — Y0, L3 — Yo, ey Ly~ Yo, 'I;)
i
* N(Z1 — Y, T2 — Yks Yo — Y05 s Tn — Y05 E)
PR
t
* N(ﬂh ~ Yk L2 — Yy T3 — Yky -~ Yk — Y0, Tn — Y0, E)
k—(n—-13
* N(J?]_ — Yk T2 — Yk T3 — Ykr s Tpn—1— Yks Tm — yO'(—_Lk—l)

N(Z1—Y0,%2 = Yo, -, Tn — Yo, t)

t
> N(Yr — Y0, T2 — Y0, -, Tn — Yo, E)

t
*® N(‘/El = Yky Y& — Y0, T3 — Y05 -y Ln — Yo, E)
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t
* N(.’El — Yk T2 — Yks Y& — Y0, ---» Tn — Yo, E)

PR

t
* N (21 — Yry T2 — Yk» T3 = Yk -, Yk — Y05 Tn _yO’E)

t
* N(SE1 — Yk, T2 — Yky T3 ~ Yky ooy Tn—1 — Yk Yk — Yo, E)
k—n)t
* N($1 Yk, T2 — Yk, T3 — Yky oy Tn—1 — Ykr Tnn — Yk %)
t
- N(yk —Y0,T2 — Yo, .-+ Tn — YO, E)
t
* N(Z1 = Yo, Yk — Y0, T3 — Y0, ---» Tn — Yo, %)
t
* N(21 — Y0, %2 — Y0, Yk — Y05 -+, Tn — Y0, E)
t
* N(m1 —Y0,T2 —Y0,%3 — Yo, --» Yk — Y0, Tn — Yo, E)

t
* N(Ccl — Y0, Yk — Y0, T3 — Y0, --3 Tn-1 — Y0, Yk — Yo, E)

* N(Z1 = Yk, T2 — Yk, T3 — Yk -+, n—1 — Yk Tn — Yk, Ct)

S (L= A) % (1= A" (1= A« (1= 1)

>A-r)*x(1-r)y>1-c¢.
Since ¢ is arbitrary, {¢ > 0: N(z1 — %0, T2 — Y0, ---» Tn — Yo, t)} = L. d
Theorem 10. Riesz Theorem: Let (X, N) be a fuzzy n-normed linear space
satisfying conditions (FN7) and (FN8) and {|e,e, -, ¢|o : € (0,1)} be an

ascending family of a-n-norms corresponding to (X, N). Let Y and Z be sub-
spaces of X and Y be a fuzzy n-compact proper subset of Z with dimZ > n. For

each ki € (0,1), there exists an element (z1,- - -, 2z,) € Z™ such that
||217227"'7Zn||a:17 N(Zl—y»"',zn—y,kl)ﬁa
forally €Y.
Proof. Let o € (0,1), (v1,-+- ,v,) € Z—Y with vy, -+, v, are linearly indepen-
dent. Let
Jnf Jlor =g,y vn = ylla =K

Case(i): Assume that & = 0. By theorem 9, there is an element 3y € Y such
that N(vy —yo, -+ ,vn — Yo,t) = 1.

(a) If yo = 0, then vy, - - - , vy, are linearly dependent, which is a contradiction.

(b) If yg # 0, then vy, -+, vy, yo are linearly independent.
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Case(ii) Let k > 0,k = |lvi =y, ,Vp — ¥Ylla =inf{s: N(vy —y, -+ ,0n —
y,8) > o}. Since N(vy —y, -+ ,vn — ¥, s) is continuous (by (FN8)), we have by
theorem 4.4 in [10]

N(”l — Y, ,vn~y,k) 205
= for each ky € (0,1), there exists an element yo € Y such that
k
k S Nvl Yo, 7/Un'_y0na S ’};—
1

Foreach j=1,2,-- - n,let

_ Vi —¥o
zj = T
'1”1 ~ Yo, V2 — Yo, "y VUn — y()”g
Then it is obvious that |21, 22, - , Znfla = 1
Now,
”zl‘ya"',zn‘y”a
U1 — Yo Un — Yo
=“ T % . ;—y“a
ﬁ’vl — Y0, " Un — QOH&’ “Ul —Yo,V2 — Y0, "y Un — Z/ona‘
1 o1 = (w0 + 13
= v1 = (Yo + yllvi = Yo, vn — Boll&, - -
Tor — 0, v —golla - e T YR T B AR
1
Up — (y() + y“vl — Yo,y Un “y0||3“
1 k
2 k>4 =k
“,Ul"y()y"'xvn”y()”a I

By the condition (FNT)
= Jo € (0,1) such that inf{k > 0:N{z1 —y, -,z — k) 2 a} 2 k1
= Jag € (0,1) such that N(z; —y, -, 2n —y, k1) < L
forallyeY. a
5. Conclusion

In this work we have introduced the concept of fuzzy anti n-normed linear
space and have proved some results based on a-n-norm which is corresponding
to fuzzy n-normed linear space. Also inspired by the concept of o — n-norm, we
have proved the fuzzy version of Riesz theorem in n-normed linear spaces.
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