Adopting cohesive soil as geocell-pocket infill materials is not fully accepted by researchers in the field of road engineering. The cohesion that may inhibit the lateral limitation of geocells is a common vital idea that exists within every researcher. However, the influence of infill materials' cohesion on geocell-reinforced performance is still not thoroughly determined. The mechanism behind this still needs to be studied in depth. This study initially discussed the relationship between subgrade bearing capacity, geocells' contribution to reinforced performance, and infill materials' cohesion (IMC). A law was proposed that adopting the soil with high cohesion as infill materials benefited the subgrade bearing capacity, but this was attributed to the superior mechanical properties of infill materials rather than geocells' contribution. Moreover, the vertical and lateral deformation of subgrade, coupling shear stress and confining stress of geocells, and deformation of geocells were deeply studied to analyze the mechanism that high cohesion can inhibit the geocells' contribution. The results indicate that the infill materials with high cohesion result in the total displacement of the subgrade toward to deeper depth, not the lateral direction. These responses decrease the vertical coupling shear stress, confining stress, and normal displacement of geocell walls, which weaken the lateral limitation of geocells.