DOI QR코드

DOI QR Code

Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade

  • Yang Zhao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Zheng Lu (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Jie Liu (Xinjiang Transportation Planning Survey and Design Institute Co., Ltd.) ;
  • Lei Ye (Anhui He chuang New Synthetic Materials Co., Ltd.) ;
  • Weizhang Xu (Anhui He chuang New Synthetic Materials Co., Ltd.) ;
  • Hailin Yao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • 투고 : 2022.12.12
  • 심사 : 2023.03.10
  • 발행 : 2023.05.10

초록

Adopting cohesive soil as geocell-pocket infill materials is not fully accepted by researchers in the field of road engineering. The cohesion that may inhibit the lateral limitation of geocells is a common vital idea that exists within every researcher. However, the influence of infill materials' cohesion on geocell-reinforced performance is still not thoroughly determined. The mechanism behind this still needs to be studied in depth. This study initially discussed the relationship between subgrade bearing capacity, geocells' contribution to reinforced performance, and infill materials' cohesion (IMC). A law was proposed that adopting the soil with high cohesion as infill materials benefited the subgrade bearing capacity, but this was attributed to the superior mechanical properties of infill materials rather than geocells' contribution. Moreover, the vertical and lateral deformation of subgrade, coupling shear stress and confining stress of geocells, and deformation of geocells were deeply studied to analyze the mechanism that high cohesion can inhibit the geocells' contribution. The results indicate that the infill materials with high cohesion result in the total displacement of the subgrade toward to deeper depth, not the lateral direction. These responses decrease the vertical coupling shear stress, confining stress, and normal displacement of geocell walls, which weaken the lateral limitation of geocells.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (Nos. 42077262, 42077261, and 41972294)

참고문헌

  1. Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B. and Oguzhanoglu, M.A. (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419.
  2. Ardakani, A. and Namaei, A. (2021), "Numerical investigation of geocell reinforced slopes behavior by considering geocell geometry effect", Geomech. Eng., 24(6), 589-597. https://doi.org/10.12989/gae.2021.24.6.589.
  3. Ari, A. and Misir, G. (2021), "Three-dimensional numerical analysis of geocell reinforced shell foundations", Geotext. Geomembranes, 49(4), 963-975. https://doi.org/10.1016/j.geotexmem.2021.01.006.
  4. Bathurst, R.J. and Karpurapu, R. (1993), "Large-scale triaxial compression testing of geocell-reinforced granular soils", Geotech. Test. J., 16(3), 296-303. https://doi.org/10.1016/0148-9062(94)93106-2.
  5. Biswas, A., Murali Krishna, A. and Dash, S. K. (2013), "Influence of subgrade strength on the performance of geocell-reinforced foundation systems", Geosynth. Int., 20(6), 376-388. https://doi.org/10.1680/gein.13.00025.
  6. Biswas, S., Hussain, M. and Singh, K.L. (2021), "Behaviour of jute and bamboo geocell with additional basal mat filled with different infill materials overlaying soft subgrade", Int. J. Geosynth. Ground Eng., 7(3), https://doi.org/10.1007/s40891-021-00297-4
  7. Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. https://doi.org/10.12989/gae.2017.13.4.641.
  8. Chaney, R.C., Demars, K.R., Krishnaswamy, N.R., Rajagopal, K. and Madhavi Latha, G. (2000), "Model studies on geocell supported embankments constructed over a soft clay foundation", Geotech. Test. J., 23(1), 45-54. https://doi.org/10.1520/gtj11122j
  9. Dash, S.K., Krishnaswamy, N.R. and Rajagopal, K. (2001), "Bearing capacity of strip footings supported on geocell-reinforced sand", Geotext. Geomembranes, 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1
  10. Dehkordi, P.F., Ghazavi, M., Ganjian, N. and Karim, U.F.A. (2019), "Effect of geocell-reinforced sand base on bearing capacity of twin circular footings", Geosynth. Int., 26(3), 224-236. https://doi.org/10.1680/jgein.19.00047.
  11. Dutta, S. and Mandal, J.N. (2016), "Model studies on geocell-reinforced fly ash bed overlying soft clay", J. Mater. Civil Eng., 28(2), 04015091. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001356.
  12. Gedela, R., Kalla, S., Sudarsanan, N. and Karpurapu, R. (2021), "Assessment of Load Distribution Mechanism in Geocell Reinforced Foundation Beds using Digital Imaging Correlation Techniques. Transp. Geotech., No. 100664. https://doi.org/10.1016/j.trgeo.2021.100664.
  13. Gedela, R. and Karpurapu, R. (2021a), "Influence of pocket shape on numerical response of geocell reinforced foundation systems", Geosynth. Int., 28(3), 327-337. https://doi.org/10.1680/jgein.20.00042.
  14. Gedela, R. and Karpurapu, R. (2021b), "Laboratory and numerical studies on the performance of geocell reinforced base layer overlying soft subgrade", Int. J. Geosynth. Ground Eng., 7(1), 1-18. https://doi.org/10.1007/s40891-020-00249-4.
  15. George, A.M., Banerjee, A., Puppala, A.J. and Saladhi, M. (2021), "Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements", Int. J. Pavement Eng., 22(2), 181-191. https://doi.org/10.1080/10298436.2019.1587437.
  16. Hegde, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. https://doi.org/10.12989/gae.2016.10.4.405.
  17. Hegde, A. and Sitharam, T.G. (2017), "Experiment and 3Dnumerical studies on soft clay bed reinforced with different types of cellular confinement systems", Transp. Geotech., 10, 73-84. https://doi.org/10.1016/j.trgeo.2017.01.001.
  18. Hegde, A.M. and Sitharam, T.G. (2015), "Effect of infill materials on the performance of geocell reinforced soft clay beds", Geomech. Geoeng., 10(3), 163-173. https://doi.org/10.1080/17486025.2014.921334.
  19. Itasca (2018), Fast Lagrangian Analysis of Continua (FLAC3D 6.0). Itasca Consulting Group Inc, Minneapolis, USA.
  20. Kargar, M. and Mir Mohammad Hosseini, S.M. (2018), "Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases", Eur. J. Environ. Civil Eng., 22(5), 596-613. https://doi.org/10.1080/19648189.2016.1214181.
  21. Khalaj, O., Tafreshi, S.N.M., Masek, B. and Dawson, A.R. (2015), "Improvement of pavement foundation response with multilayers of geocell reinforcement: Cyclic plate load test", Geomech. Eng., 9(3), 373-395. https://doi.org/10.12989/gae.2015.9.3.373.
  22. Kumar, A., Singh, A.P. and Chatterjee, K. (2019), "Ground improvement using geocells to enhance trafficability in desert soils", Geomech. Eng., 19(1), 71-78. https://doi.org/10.12989/gae.2019.19.1.071.
  23. Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-130. https://doi.org/10.12989/gae.2011.3.2.117.
  24. Latha, G.M. and Somwanshi, A. (2009), "Effect of reinforcement form on the bearing capacity of square footings on sand", Geotext. Geomembranes, 27(6), 409-422. https://doi.org/10.1016/j.geotexmem.2009.03.005.
  25. Lu, Z., Xian, S., Yao, H., Fang, R. and She, J. (2019), "Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil", Cold Reg. Sci. Technol., 157, 42-52. https://doi.org/10.1016/j.coldregions.2018.09.009.
  26. Luo, X., Lu, Z., Yao, H., Zhang, J. and Song, W. (2021), "Experimental study on soft rock subgrade reinforced with geocell", Road Mater. Pavement Design, 1-15. https://doi.org/10.1080/14680629.2021.1948907.
  27. Moghaddas Tafreshi, S.N., Rafiezadeh Malekshah, A., Rahimi, M. and Dawson, A.R. (2021), "Bearing capacity improvement using soil-filled post-consumer PET bottles", Geosynth. Int., 1-29. https://doi.org/10.1680/jgein.21.00031.
  28. Moghaddas Tafreshi, S.N., Sharifi, P. and Dawson, A.R. (2016), "Performance of circular footings on sand by use of multiple-geocell or -planar geotextile reinforcing layers", Soils Found., 56(6), 984-997. https://doi.org/10.1016/j.sandf.2016.11.004.
  29. Oliaei, M. and Kouzegaran, S. (2017), "Efficiency of cellular geosynthetics for foundation reinforcement", Geotext. Geomembranes, 45(2), 11-22. https://doi.org/10.1016/j.geotexmem.2016.11.001.
  30. Pokharel, S.K., Han, J., Leshchinsky, D., Parsons, R.L. and Halahmi, I. (2010), "Investigation of factors influencing behavior of single geocell-reinforced bases under static loading", Geotext. Geomembranes, 28(6), 570-578. https://doi.org/10.1016/j.geotexmem.2010.06.002.
  31. Saride, S., Pradhan, S., Sitharam, T.G. and Puppala, A.J. (2013), "Numerical analysis of geocell reinforced ballast overlying soft clay subgrade", Geomech. Eng., 5(3), 263-281. https://doi.org/10.12989/gae.2013.5.3.263.
  32. Sheikh, I.R. and Shah, M.Y. (2020), "State-of-the-art review on the role of geocells in soil reinforcement", Geotech. Geol. Eng., 39(3), 1727-1741. https://doi.org/10.1007/s10706-020-01629-3.
  33. Sireesh, S., Sitharam, T.G. and Dash, S.K. (2009), "Bearing capacity of circular footing on geocell-sand mattress overlying clay bed with void", Geotext. Geomembranes, 27(2), 89-98. https://doi.org/10.1016/j.geotexmem.2008.09.005.
  34. Sitharam, T.G. and Hegde, A. (2013), "Design and construction of geocell foundation to support the embankment on settled red mud", Geotext. Geomembranes, 41, 55-63. https://doi.org/10.1016/j.geotexmem.2013.08.005.
  35. Sitharam, T.G. and Sireesh, S. (2005), "Behavior of embedded footings supported on geogrid cell reinforced foundation beds", Geotech. Test. J., 28(5), 452-463. https://doi.org/10.1520/GTJ12751.
  36. Song, F. and Tian, Y. (2019), "Three-dimensional numerical modelling of geocell reinforced soils and its practical application", Geomech. Eng., 17(1), 1-9. https://doi.org/10.12989/gae.2019.17.1.001.
  37. Suku, L., Prabhu, S.S., Ramesh, P. and Babu, G.L.S. (2016), "Behavior of geocell-reinforced granular base under repeated loading", Transp. Geotech., 9, 17-30. https://doi.org/10.1016/j.trgeo.2016.06.002.
  38. Tafreshi, S.N.M., Darabi, N.J. and Dawson, A.R. (2018), "Cyclic loading response of footing on multilayered rubber-soil mixtures", Geomech. Eng., 14(2), 115-129. https://doi.org/10.12989/gae.2018.14.2.115.
  39. Tafreshi, S.N.M. and Dawson, A.R. (2010), "Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement", Geotext. Geomembranes, 28(1), 72-84. https://doi.org/10.1016/j.geotexmem.2009.09.003.
  40. Thakur, J.K., Han, J. and Parsons, R.L. (2017), "Factors influencing deformations of geocell-reinforced recycled asphalt pavement bases under cyclic loading", J. Mater. Civil Eng., 29(3), 04016240. https://doi.org/10.1061/(asce)mt.1943-5533.0001760.
  41. Thakur, J.K., Han, J., Pokharel, S.K. and Parsons, R.L. (2012), "Performance of geocell-reinforced recycled asphalt pavement (RAP) bases over weak subgrade under cyclic plate loading", Geotext. Geomembranes, 35, 14-24. https://doi.org/10.1016/j.geotexmem.2012.06.004.
  42. Thallak, S.G., Saride, S. and Dash, S.K. (2007), "Performance of surface footing on geocell-reinforced soft clay beds", Geotech. Geol. Eng., 25(5), 509-524. https://doi.org/10.1007/s10706-007-9125-8.
  43. Xian, S. (2019), "Study on mechanical properties and service performance of levee filling in deep seasonal frozen regions", Ph.D., Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.