The small & micro business has the characteristics of both consumer credit risk and business credit risk. In predicting the bankruptcy for small-micro businesses, the problem is that in most cases, the financial data for evaluating business credit risks of small & micro businesses are not available. To alleviate such problem, we propose a bankruptcy prediction mechanism using the credit card sales information available, because most small businesses are member store of some credit card issuers, which is the main purpose of this study. In order to perform this study, we derive some variables and analyze the relationship between good and bad signs. We employ the new statistical learning technique, support vector machines (SVM) as a classifier. We use grid search technique to find out better parameter for SVM. The experimental result shows that credit card sales information could be a good substitute for the financial data for evaluating business credit risk in predicting the bankruptcy for small-micro businesses. In addition, we also find out that SVM performs best, when compared with other classifiers such as neural networks, CART, C5.0 multivariate discriminant analysis (MDA), and logistic regression.