In this paper, temperature distributions in radial fin of hyperbolic profile for steady -state with no heat generation are obtained by one-dimensional analytical method, finite difference method and experiment respectively. Heat flow rate and fin efficiency from the fin model are obtained by analytical method. To compare the exact solutions obtained by theoretical analysis with the results obtained by finite difference method, cylindrical shape is selected. Particularly, equations of finite difference method for cylindrical shape with irregular boundary are rearranged and formulated. Consequently, temperature distributions in radial fin can certify that are similar to exact solutions. From theoretical analysis, the effects according to heat flow rate and fin efficiency are related to variation of parameters which are fin thickness ${\delta}_o$, fin base temperature $T_o$, thermal conductivity K with same basic dimensions and the fleets are studied and compared.