In this paper, we studied the effects of intersection angles of the flow-foucusing type droplet generation device inlet channel on droplet diameter using numerical simulation modeling. We modeled different intersection angles with a fixed continuous channel width, dispersed channels width, orifices width, and expansion channels width. Numerical simulations were performed using COMSOL Multiphysics$^{(R)}$ to solve the incompressible Navier-Stokes equations for a two-phase flow in various flow-focusing geometries. Modeling results showed that an increase of the intersection angle causes an increase in the modification of the dispersed flow rate ($v^{\prime}{_d}$), and the increase of the modification of the continuous flow rate ($v^{\prime}{_c}$) obstructs the dispersed phase fluid flow, thereby reducing the droplet diameter. However, the droplet diameter did not decrease, even when the intersection angle increased. The droplet diameter decreased when the intersection angle was less than $90^{\circ}$, increased at an intersection angle of $90^{\circ}$, and decreased when the intersection angle was more than $90^{\circ}$. Furthermore, when the intermediate energy deceased, there was a decrease in the droplet diameter when the intersection angle increased. Therefore, variations in the droplet diameter can be used to change the intersection angle and fluid flow rate.