The red alga Gracilaria vermiculophylla, a species native to the waters of Korea and Japan, has invaded marine coastal areas of Europe and the Americas, thriving in conditions that differ from those of its native habitat. In recent years, G. vermiculophylla has been discovered in the Long Island Sound (LIS) estuary growing alongside the native congener Gracilaria tikvahiae. The goal of this study was to determine whether the two strains of G. vermiculophylla from different regions of the world have evolved genetic differences (i.e., ecotypic differentiation) or if the physiological performance of the strains simply reflects phenotypic plasticity. Two strains of G. vermiculophylla (isolated in Korea and LIS) and a strain of the LIS native G. tikvahiae were grown for four weeks under temperatures ranging from 20 to $34^{\circ}C$ using a temperature gradient table (all other environmental conditions were kept constant). At the end of each week, wet weight of each sample was recorded, and thalli were reduced to the original stocking density of $1gL^{-1}$ (excess biomass was preserved for tissue carbon and nitrogen analysis). Generally, the growth rates of Korean G. vermiculophylla > LIS G. vermiculophylla > G. tikvahiae. After one week of growth G. tikvahiae grew 9.1, 12.0, 9.4, and 0.2% $d^{-1}$, at temperatures of 20, 24, 29, and $34^{\circ}C$, respectively, while G. vermiculophylla (LIS) grew 6.6, 6.2, 5.7, and 3.6% $d^{-1}$. G. vermiculophylla (Korea) grew 15.4, 22.9, 23.2, and 10.1% $d^{-1}$, much higher than the two strains currently inhabiting the LIS. On average, the LIS G. vermiculophylla strain contained 4-5% DW N, while the Korean strain and G. tikvahiae had more modest levels of 2-3% N DW. However, tissue N content declined as temperature increased in LIS and Korean G. vermiculophylla. The non-native haplotype may have evolved genetic differences resulting in lower growth capacity while concentrating significantly more nitrogen, giving the non-native a competitive advantage.