DOI QR코드

DOI QR Code

FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae

  • Fernando, I.P. Shanura (Department of Marine Life Science, Jeju National University) ;
  • Sanjeewa, K.K. Asanka (Department of Marine Life Science, Jeju National University) ;
  • Samarakoon, Kalpa W. (Industrial Technology Institute (ITI)) ;
  • Lee, Won Woo (Department of Marine Life Science, Jeju National University) ;
  • Kim, Hyun-Soo (Department of Marine Life Science, Jeju National University) ;
  • Kim, Eun-A (Department of Marine Life Science, Jeju National University) ;
  • Gunasekara, U.K.D.S.S. (Industrial Technology Institute (ITI)) ;
  • Abeytunga, D.T.U. (Colombo Science and Technology Cell, Faculty of Science, University of Colombo) ;
  • Nanayakkara, Chandrika (Colombo Science and Technology Cell, Faculty of Science, University of Colombo) ;
  • de Silva, E.D. (Colombo Science and Technology Cell, Faculty of Science, University of Colombo) ;
  • Lee, Hyi-Seung (Marine Natural Products Laboratory, Korea Ocean Research and Development Institute) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2016.09.08
  • Accepted : 2016.12.01
  • Published : 2017.03.15

Abstract

Polysaccharides of marine algae exhibit different structural characteristics and interesting biological functions. In this study, crude polysaccharides (CP) of eleven Sri Lankan marine algae obtained through hot water extraction and ethanol precipitation were investigated for DPPH, alkyl, and hydroxyl radical scavenging activities using electron spin resonance spectrometry and for intracellular reactive oxygen species scavenging activity in the Chang liver cell line. Characterization of CPs was done by Fourier transform infrared (FTIR) spectroscopy and by analysis of the monosaccharide composition. Time-dependent density functional theory quantum-chemical calculations at the RB3LYP/6-31G(d,p) level for constructed dimeric units of the corresponding polysaccharides were used to resolve the FTIR spectra. CPs from Chnoospora minima showed the highest DPPH and alkyl radical scavenging activities and higher intracellular reactive oxygen species scavenging effects for both AAPH and $H_2O_2$ induced ROS production in "Chang" cells. The major polysaccharide constituent in C. minima CP was identified as fucoidan and it displayed a higher sulfate content. The degree of sulfation of these polysaccharides suggests a positive correlation with the observed antioxidant properties.

Keywords

References

  1. Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A. & Reis, R. L. 2010. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr. Res. 345:2194-2200. https://doi.org/10.1016/j.carres.2010.07.039
  2. Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G. & Vasanthi, H. R. 2010. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem. Toxicol. 48:187-192. https://doi.org/10.1016/j.fct.2009.09.036
  3. Cardenas-Jiron, G., Leal, D., Matsuhiro, B. & Osorio-Roman, I. O. 2011. Vibrational spectroscopy and density functional theory calculations of poly-D-mannuronate and heteropolymeric fractions from sodium alginate. J. Raman Spectrosc. 42:870-878. https://doi.org/10.1002/jrs.2760
  4. Chandia, N. P., Matsuhiro, B., Mejias, E. & Moenne, A. 2004. Alginic acids in Lessonia vadosa: partial hydrolysis and elicitor properties of the polymannuronic acid fraction. J. Appl. Phycol. 16:127-133. https://doi.org/10.1023/B:JAPH.0000044778.44193.a8
  5. Chandia, N. P., Matsuhiro, B. & Vasquez, A. E. 2001. Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr. Polym. 46:81-87. https://doi.org/10.1016/S0144-8617(00)00286-1
  6. Chandler, S. F. & Dodds, J. H. 1983. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2:205-208. https://doi.org/10.1007/BF00270105
  7. Christiaen, D. & Bodard, M. 1983. Spectroscopie infrarouge de films d'agar de Gracilaria verrucosa (Huds.) Papenfuss. Bot. Mar. 26:425-427.
  8. Coppejans, E., Leliaert, F., Dargent, O., Gunasekara, R. & De Clerck, O. 2009. Sri Lankan seaweeds: methodologies and field guide to the dominant species. Abc Taxa 6:1- 265.
  9. Dodgson, K. S. & Price, R. G. 1962. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 84:106-110. https://doi.org/10.1042/bj0840106
  10. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  11. Dunn, E. K., Shoue, D. A., Huang, X., Kline, R. E., MacKay, A. L., Carpita, N. C., Taylor, I. E. & Mandoli, D. F. 2007. Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular 'mannan weed', Acetabularia acetabulum. Plant Cell Physiol. 48:122-133.
  12. Durairatnam, M. 1961. Contribution to the study of the marine algae of Ceylon. Bull. Fish. Res. Stn. Ceylon 10:1-181.
  13. Engelmann, J., Volk, J., Leyhausen, G. & Geurtsen, W. 2005. ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. J. Biomed. Mater. Res. B Appl. Biomater. 75:272-276.
  14. Fenoradosoa, T. A., Delattre, C., Laroche, C., Wadouachi, A., Dulong, V., Picton, L., Andriamadio, P. & Michaud, P. 2009. Highly sulphated galactan from Halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coasts. Int. J. Biol. Macromol. 45:140-145. https://doi.org/10.1016/j.ijbiomac.2009.04.015
  15. Finkelstein, E., Rosen, G. M. & Rauckman, E. J. 1980. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200:1-16. https://doi.org/10.1016/0003-9861(80)90323-9
  16. Fleita, D., El-Sayed, M. & Rifaat, D. 2015. Evaluation of the antioxidant activity of enzymatically-hydrolyzed sulfated polysaccharides extracted from red algae: Pterocladia capillacea. LWT Food Sci. Technol. 63:1236-1244. https://doi.org/10.1016/j.lwt.2015.04.024
  17. Heo, S. -J., Cha, S. -H., Lee, K. -W. & Jeon, Y. -J. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21:149-156. https://doi.org/10.4490/ALGAE.2006.21.1.149
  18. Hiramoto, K., Johkoh, H., Sako, K. & Kikugawa, K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 19:323-332. https://doi.org/10.3109/10715769309056521
  19. Horwitz, W. & Latimer, G. W. Jr. 2005. Official methods of analysis of AOAC International. 18th ed. AOAC International, Gaithersburg, MD.
  20. Jeon, C., Park, J. Y. & Yoo, Y. J. 2002. Characteristics of metal removal using carboxylated alginic acid. Water Res. 36:1814-1824. https://doi.org/10.1016/S0043-1354(01)00389-X
  21. Ji, C. -F., Ji, Y. -B. & Meng, D. -Y. 2013. Sulfated modification and anti-tumor activity of laminarin. Exp. Ther. Med. 6:1259-1264. https://doi.org/10.3892/etm.2013.1277
  22. Kandasamy, S., Khan, W., Kulshreshtha, G., Evans, F., Critchley, A. T., Fitton, J. H., Stringer, D. N., Gardiner, V. -A. & Prithiviraj, B. 2015. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae 30:147-161. https://doi.org/10.4490/algae.2015.30.2.147
  23. Kang, M. -C., Kim, S. -Y., Kim, E. -A., Lee, J. -H., Kim, Y. -S., Yu, S. -K., Chae, J. B., Choe, I. -H., Cho, J. H. & Jeon, Y. -J. 2015. Antioxidant activity of polysaccharide purified from Acanthopanax koreanum Nakai stems in vitro and in vivo zebrafish model. Carbohydr. Polym. 127:38-46. https://doi.org/10.1016/j.carbpol.2015.02.043
  24. Kim, S. -Y., Kim, E. -A., Kang, M. -C., Lee, J. -H., Yang, H. -W., Lee, J. -S., Lim, T. I. & Jeon, Y. -J. 2014. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model. Algae 29:165-174. https://doi.org/10.4490/algae.2014.29.2.165
  25. Lakmal, H. H. C., Samarakoon, K. W., Lee, W., Lee, J. -H., Abeytunga, D. T. U., Lee, H. -S. & Jeon, Y. -J. 2014. Anticancer and antioxidant effects of selected Sri Lankan marine algae. J. Natl. Sci. Found. Sri Lanka 42:315-323. https://doi.org/10.4038/jnsfsr.v42i4.7730
  26. Leal, D., Matsuhiro, B., Rossi, M. & Caruso, F. 2008. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 343:308-316. https://doi.org/10.1016/j.carres.2007.10.016
  27. Lee, S. -H., Kang, S. -M., Sok, C. H., Hong, J. T., Oh, J. -Y. & Jeon, Y. -J. 2015. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae 30:163-170. https://doi.org/10.4490/algae.2015.30.2.163
  28. Lee, S. -H., Ko, C. -I., Jee, Y., Jeong, Y., Kim, M., Kim, J. -S. & Jeon, Y. -J. 2013. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr. Polym. 92:84-89. https://doi.org/10.1016/j.carbpol.2012.09.066
  29. Mahendran, M., Sirisena, D. M., Morisaki, M., Sano, F., Ikekawa, N. & Sivapalan, A. 1980. Sterols of some Sri Lankan marine algae. J. Natl. Sci. Counc. Sri Lanka 8:69-74.
  30. Marais, M. -F. & Joseleau, J. -P. 2001. A fucoidan fraction from Ascophyllum nodosum. Carbohydr. Res. 336:155-159. https://doi.org/10.1016/S0008-6215(01)00257-9
  31. Mathlouthi, M. & Koenig, J. L. 1987. Vibrational spectra of carbohydrates. Adv. Carbohydr. Chem. Biochem. 44:7- 89.
  32. Matsuhiro, B. 1996. Vibrational spectroscopy of seaweed galactans. Hydrobiologia 326:481-489.
  33. Mollet, J. -C., Rahaoui, A. & Lemoine, Y. 1998. Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). J. Appl. Phycol. 10:59-66. https://doi.org/10.1023/A:1008051528443
  34. Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M. & Hara, Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 21:895-902. https://doi.org/10.1016/0891-5849(96)00237-7
  35. Nishiguchi, T., Jiang, Z., Ueno, M., Takeshita, S., Cho, K., Roh, S. W., Kang, K. -H., Yamaguchi, K., Kim, D. & Oda, T. 2014. Reevaluation of bactericidal, cytotoxic, and macrophage- stimulating activities of commercially available Fucus vesiculosus fucoidan. Algae 29:237-247. https://doi.org/10.4490/algae.2014.29.3.237
  36. Percival, E. 1979. The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. Phycol. J. 14:103-117. https://doi.org/10.1080/00071617900650121
  37. Pereira, L., Gheda, S. F. & Ribeiro-Claro, P. J. A. 2013. Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int. J. Carbohydr. Chem. 2013:537202.
  38. Pereira, L., Sousa, A., Coelho, H., Amado, A. M. & Ribeiro- Claro, P. J. A. 2003. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol. Eng. 20:223-228. https://doi.org/10.1016/S1389-0344(03)00058-3
  39. Praiboon, J., Chirapart, A., Akakabe, Y., Bhumibhamon, O. & Kajiwarac, T. 2006. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci. Asia 32(Suppl. 1):11- 17.
  40. Premakumara, G. A. S., Ratnasooriya, W. D. & Tillekeratne, L. M. V. 1996. Isolation of a non-steroidal contragestative agent from Sri Lankan marine red alge, Gelidiella acerosa. Contraception 54:379-383. https://doi.org/10.1016/S0010-7824(96)00198-9
  41. Roberts, M. A. & Quemener, B. 1999. Measurement of carrageenans in food: challenges, progress, and trends in analysis. Trends Food Sci. Technol. 10:169-181. https://doi.org/10.1016/S0924-2244(99)00043-6
  42. Tul'chinsky, V. M., Zurabyan, S. E., Asankozhoev, K. A., Kogan, G. A. & Khorlin, A. Y. 1976. Study of the infrared spectra of oligosaccharides in the region $1,000-40 cm^{-1}$. Carbohydr. Res. 51:1-8. https://doi.org/10.1016/S0008-6215(00)84031-8
  43. Vijayabaskar, P., Vaseela, N. & Thirumaran, G. 2012. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med. 10:421-428.
  44. Wijesekara, I., Pangestuti, R. & Kim, S. -K. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 84:14-21. https://doi.org/10.1016/j.carbpol.2010.10.062
  45. Wijesinghe, W. A., Senevirathne, M., Oh, M. -C. & Jeon, Y. -J. 2011. Protective effect of methanol extract from citrus press cakes prepared by far-infrared radiation drying on $H_2O_2$-mediated oxidative damage in Vero cells. Nutr. Res. Pract. 5:389-395. https://doi.org/10.4162/nrp.2011.5.5.389
  46. Wijesinghe, W. A. J. P. & Jeon, Y. -J. 2012a. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr. Polym. 88:13-20. https://doi.org/10.1016/j.carbpol.2011.12.029
  47. Wijesinghe, W. A. J. P. & Jeon, Y. -J. 2012b. Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6-12. https://doi.org/10.1016/j.fitote.2011.10.016
  48. Xia, S., Gao, B., Li, A., Xiong, J., Ao, Z. & Zhang, C. 2014. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar. Drugs 12:4883-4897. https://doi.org/10.3390/md12094883
  49. Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139

Cited by

  1. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.14
  2. against HL-60 and MCF-7 cancer cells pp.0260437X, 2017, https://doi.org/10.1002/jat.3559
  3. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.29
  4. Cryptic species diversity of ochtodenes-producing Portieria species (Gigartinales, Rhodophyta) from the northwest Pacific vol.33, pp.3, 2018, https://doi.org/10.4490/algae.2018.33.7.30
  5. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31660-7
  6. Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis - an in vitro assay vol.54, pp.1, 2018, https://doi.org/10.1590/s2175-97902018000117280
  7. The potential of fucoidans from Chnoospora minima and Sargassum polycystum in cosmetics: antioxidant, anti-inflammatory, skin-whitening, and antiwrinkle activities pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1415-4
  8. and its potent antioxidant and anti-inflammatory activities pp.01458884, 2018, https://doi.org/10.1111/jfbc.12628
  9. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0406-1
  10. Preparation and characterization of red seaweed/calcium carbonate composite films vol.368, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/368/1/012041
  11. Antimicrobial, Antioxidant, Anticancer Activity and Phytochemical Analysis of the Red Alga, Laurencia papillosa vol.14, pp.4, 2018, https://doi.org/10.3923/ijp.2018.572.583
  12. A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju Island South Korea: its components and bioactive properties vol.33, pp.4, 2018, https://doi.org/10.4490/algae.2018.33.11.15
  13. Protective Effect of Water Extract of Citrus Pomace against AAPH-Induced Oxidative Stress In Vitro in Vero Cells and In Vivo in Zebrafish vol.23, pp.4, 2017, https://doi.org/10.3746/pnf.2018.23.4.301
  14. Extraction and analysis of the parietal polysaccharides of acorn pericarps from Quercus trees vol.29, pp.3, 2017, https://doi.org/10.1590/0104-1428.06119
  15. Effect of Cinnamon Extraction Oil (CEO) for Algae Biofilm Shelf-Life Prolongation vol.11, pp.1, 2019, https://doi.org/10.3390/polym11010004
  16. Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus vol.9, pp.20, 2017, https://doi.org/10.1039/c9ra00959k
  17. Different Antifungal Activity of Anabaena sp., Ecklonia sp., and Jania sp. against Botrytis cinerea vol.17, pp.5, 2017, https://doi.org/10.3390/md17050299
  18. Anti-oxidant and anti-inflammatory activities of ultrasonic-assistant extracted polyphenol-rich compounds from Sargassum muticum vol.37, pp.3, 2019, https://doi.org/10.1007/s00343-019-8138-5
  19. Restoring the Reactivity of Organic Acid Solution Used for Silver Recovery from Solar Cells by Fractional Distillation vol.11, pp.13, 2017, https://doi.org/10.3390/su11133659
  20. In Vitro and In Vivo Antioxidant Activities of Polysaccharides Isolated from Celluclast-Assisted Extract of an Edible Brown Seaweed, Sargassum fulvellum vol.8, pp.10, 2019, https://doi.org/10.3390/antiox8100493
  21. Sn(OH)x-assisted synthesis of mesoporous Mn-porphyrinic frameworks and their carbon derivatives for electrocatalysis vol.48, pp.39, 2017, https://doi.org/10.1039/c9dt03085a
  22. Transcriptomic Analysis Reveals the Roles of Detoxification Systems in Response to Mercury in Chromera velia vol.9, pp.11, 2017, https://doi.org/10.3390/biom9110647
  23. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview vol.17, pp.12, 2017, https://doi.org/10.3390/md17120674
  24. Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions vol.10, pp.3, 2017, https://doi.org/10.3390/app10030916
  25. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages vol.148, pp.None, 2017, https://doi.org/10.1016/j.ijbiomac.2020.01.009
  26. Antioxidant Activity of Sulfated Polysaccharide Extract from Green Seaweed (Caulerpa lentillifera) Makassar, Indonesia vol.840, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/kem.840.214
  27. Human Keratinocyte UVB-Protective Effects of a Low Molecular Weight Fucoidan from Sargassum horneri Purified by Step Gradient Ethanol Precipitation vol.9, pp.4, 2020, https://doi.org/10.3390/antiox9040340
  28. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water vol.27, pp.15, 2017, https://doi.org/10.1007/s11356-020-08332-z
  29. An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—Two Chlorophyta Collected from the Philippines vol.25, pp.12, 2017, https://doi.org/10.3390/molecules25122901
  30. A study on a potential bioactive compound in green seaweed Chaetomorpha antennina Kützing (1847) extract as antioxidant from the Gosong Telaga Coast, Aceh Singkil vol.564, pp.None, 2020, https://doi.org/10.1088/1755-1315/564/1/012058
  31. Marine Algae of the Genus Gracilaria as Multi Products Source for Different Biotechnological and Medical Applications vol.14, pp.3, 2017, https://doi.org/10.2174/1872208314666200121144816
  32. Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides from Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions vol.18, pp.11, 2020, https://doi.org/10.3390/md18110534
  33. Theoretical DFT interpretation of infrared spectra of biologically active arabinogalactan sulphated derivatives vol.74, pp.11, 2017, https://doi.org/10.1007/s11696-020-01220-3
  34. Exopolysaccharides directed embellishment of diatoms triggered on plastics and other marine litter vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-74801-7
  35. All-Natural Smart Mycelium Surface with Tunable Wettability vol.4, pp.1, 2017, https://doi.org/10.1021/acsabm.0c01449
  36. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes vol.10, pp.3, 2017, https://doi.org/10.3390/antiox10030347
  37. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030516
  38. Immunomodulatory, Antioxidant Activity and Cytotoxic Effect of Sulfated Polysaccharides from Porphyridium cruentum. (S.F.Gray) Nägeli vol.11, pp.4, 2021, https://doi.org/10.3390/biom11040488
  39. In vitro fermentation characteristics of polysaccharide from Sargassum fusiforme and its modulation effects on gut microbiota vol.151, pp.None, 2021, https://doi.org/10.1016/j.fct.2021.112145
  40. Comparision of antioxidant and anti-inflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe vol.24, pp.5, 2017, https://doi.org/10.47853/fas.2021.e20
  41. Enhancing microalgal productivity and quality by different colored photobioreactors for biodiesel production using anaerobic reactor effluent vol.11, pp.3, 2017, https://doi.org/10.1007/s13399-020-00852-5
  42. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19) vol.505, pp.None, 2017, https://doi.org/10.1016/j.carres.2021.108326
  43. Evaluation of sustainable technologies for the processing of Sargassum muticum: cascade biorefinery schemes vol.23, pp.18, 2017, https://doi.org/10.1039/d1gc01900g
  44. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera vol.68, pp.4, 2017, https://doi.org/10.3897/pharmacia.68.e73158
  45. Chemical Characterization and Bioaccessibility Assessment of Bioactive Compounds from Umbu (Spondias tuberosa A.) Fruit Peel and Pulp Flours vol.10, pp.11, 2017, https://doi.org/10.3390/foods10112597
  46. Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency vol.11, pp.11, 2017, https://doi.org/10.3390/nano11112939
  47. A Combination Approach in Inhibiting Type 2 Diabetes-Related Enzymes Using Ecklonia radiata Fucoidan and Acarbose vol.13, pp.11, 2017, https://doi.org/10.3390/pharmaceutics13111979
  48. Adaptation of autotrophic to heterotrophic culture of Porphyridium purpureum (Bory) K.M. Drew & R.Ross: characterization of biomass and production of exopolysaccharides vol.33, pp.6, 2017, https://doi.org/10.1007/s10811-021-02566-1
  49. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective vol.12, pp.None, 2017, https://doi.org/10.1016/j.fochx.2021.100168
  50. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production vol.10, pp.12, 2017, https://doi.org/10.3390/foods10123125
  51. Highly Crosslinked Agar/Acrylic Acid Hydrogels with Antimicrobial Properties vol.7, pp.4, 2021, https://doi.org/10.3390/gels7040183
  52. Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction vol.154, pp.None, 2017, https://doi.org/10.1016/j.lwt.2021.112446
  53. Structural characterization of two Hericium erinaceus polysaccharides and their protective effects on the alcohol-induced gastric mucosal injury vol.375, pp.None, 2017, https://doi.org/10.1016/j.foodchem.2021.131896