DOI QR코드

DOI QR Code

The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA

  • Gorman, Leah (Department of Environmental Studies, Purchase College) ;
  • Kraemer, George P. (Department of Environmental Studies, Purchase College) ;
  • Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut-Stamford) ;
  • Boo, Sung Min (Department of Biology, Chungnam National University) ;
  • Kim, Jang K. (Department of Marine Science, School of Natural Sciences, Incheon National University)
  • Received : 2016.07.01
  • Accepted : 2017.01.30
  • Published : 2017.03.15

Abstract

The red alga Gracilaria vermiculophylla, a species native to the waters of Korea and Japan, has invaded marine coastal areas of Europe and the Americas, thriving in conditions that differ from those of its native habitat. In recent years, G. vermiculophylla has been discovered in the Long Island Sound (LIS) estuary growing alongside the native congener Gracilaria tikvahiae. The goal of this study was to determine whether the two strains of G. vermiculophylla from different regions of the world have evolved genetic differences (i.e., ecotypic differentiation) or if the physiological performance of the strains simply reflects phenotypic plasticity. Two strains of G. vermiculophylla (isolated in Korea and LIS) and a strain of the LIS native G. tikvahiae were grown for four weeks under temperatures ranging from 20 to $34^{\circ}C$ using a temperature gradient table (all other environmental conditions were kept constant). At the end of each week, wet weight of each sample was recorded, and thalli were reduced to the original stocking density of $1gL^{-1}$ (excess biomass was preserved for tissue carbon and nitrogen analysis). Generally, the growth rates of Korean G. vermiculophylla > LIS G. vermiculophylla > G. tikvahiae. After one week of growth G. tikvahiae grew 9.1, 12.0, 9.4, and 0.2% $d^{-1}$, at temperatures of 20, 24, 29, and $34^{\circ}C$, respectively, while G. vermiculophylla (LIS) grew 6.6, 6.2, 5.7, and 3.6% $d^{-1}$. G. vermiculophylla (Korea) grew 15.4, 22.9, 23.2, and 10.1% $d^{-1}$, much higher than the two strains currently inhabiting the LIS. On average, the LIS G. vermiculophylla strain contained 4-5% DW N, while the Korean strain and G. tikvahiae had more modest levels of 2-3% N DW. However, tissue N content declined as temperature increased in LIS and Korean G. vermiculophylla. The non-native haplotype may have evolved genetic differences resulting in lower growth capacity while concentrating significantly more nitrogen, giving the non-native a competitive advantage.

Keywords

References

  1. Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I. & Yarish, C. 2011a. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199. https://doi.org/10.1016/j.jembe.2011.06.034
  2. Abreu, M. H., Pereira, R., Sousa-Pinto, I. & Yarish, C. 2011b. Ecophysiological studies of the non-indigenous species Gracilaria vermiculophylla (Rhodophyta) and its abundance patterns in Ria de Aveiro Lagoon, Portugal. Eur. J. Phycol. 46:453-464. https://doi.org/10.1080/09670262.2011.633174
  3. Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011c. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87. https://doi.org/10.1016/j.aquaculture.2010.12.036
  4. Anderson, L. W. J. 2007. Control of invasive seaweed. Bot. Mar. 50:418-437.
  5. Bertelli, C. M. & Unsworth, R. K. F. 2014. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83:425-429. https://doi.org/10.1016/j.marpolbul.2013.08.011
  6. Breeman, A. M. 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgolander Meeresunters. 42:199-241. https://doi.org/10.1007/BF02366043
  7. Byers, J. E., Gribben, P. E., Yeager, C. & Sotka, E. E. 2012. Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol. Invasions 14:2587-2600. https://doi.org/10.1007/s10530-012-0254-5
  8. Carlton, J. T. 2001. Introduced species in the U.S. coastal waters: environmental impacts and management priorities. Pew Oceans Commission, Arlington, VA, 28 pp.
  9. Chopin, T., Gallant, T. & Davison, I. 1995. Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorus and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. J. Phycol. 31:283-293. https://doi.org/10.1111/j.0022-3646.1995.00283.x
  10. Cohen, A. N., Weinstein, A., Emmett, M. A., Lau, W. & Carlton, J. T. 2001. Investigations into the introduction of nonindigenous marine organisms via the cross-continental trade in marine baitworms. A report for the U.S. Fish and Wildlife Service. June 2001. San Francisco Bay Program. U.S. Fish and Wildlife Service, Sacramento, CA, 29 pp.
  11. Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. 2004. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7:721-733. https://doi.org/10.1111/j.1461-0248.2004.00616.x
  12. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. 24:441-448. https://doi.org/10.1007/s10811-011-9734-8
  13. Freshwater, D. W., Montgomery, F., Greene, J. K., Hamner, R. M., Williams, M. & Whitfield, P. E. 2006. Distribution and identification of an invasive Gracilaria species that is hampering commercial fishing operations in southeastern North Carolina, USA. Biol. Invasions 8:631-637. https://doi.org/10.1007/s10530-005-1809-5
  14. Gulbransen, D. J., McGlathery, K. J., Marklund, M., Norris, J. N. & Gurgel, C. F. D. 2012. Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in the Virginia coastal bays, USA: COX1 analysis reveals high genetic richness of an introduced macroalga. J. Phycol. 48:1278-1283. https://doi.org/10.1111/j.1529-8817.2012.01218.x
  15. Hammann, M., Rempt, M., Pohnert, G., Wang, G., Boo, S. M. & Weinberger, F. 2016. Increased potential for wound activated production of prostaglandin $E_2$ and related toxic compounds in non-native populations of Gracilaria vermiculophylla. Harmful Algae 51:81-88. https://doi.org/10.1016/j.hal.2015.11.009
  16. Hammann, M., Wang, G., Rickert, E., Boo, S. M. & Weinberger, F. 2013. Invasion success of the seaweed Gracilaria vermiculophylla correlates with low palatability. Mar. Ecol. Prog. Ser. 486:93-103. https://doi.org/10.3354/meps10361
  17. Hoffle, H., Thomsen, M. S. & Holmer, M. 2011. High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuar. Coast. Shelf Sci. 92:35-46. https://doi.org/10.1016/j.ecss.2010.12.017
  18. Intergovernmental Panel on Climate Change (IPCC). 2014. Climate change 2014 synthesis report summary for policymakers. Available from: https://www.ipcc.ch/pdf/ assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed Jul 1, 2016.
  19. Johnson, C. R. & Chapman, A. R. O. 2007. Seaweed invasions: introduction and scope. Bot. Mar. 50:321-325.
  20. Johnson, R. B., Kim, J. K., Armbruster, L. C. & Yarish, C. 2014. Nitrogen allocation of Gracilaria tikvahiae grown in urbanized estuaries of Long Island Sound and New York City, USA: a preliminary evaluation of ocean farmed Gracilaria for alternative fish feeds. Algae 29:227-235. https://doi.org/10.4490/algae.2014.29.3.227
  21. Keser, M., Swenarton, J. T., Vozarik, J. M. & Foertch, J. F. 2003. Decline in eelgrass (Zostera marina L.) in Long Island Sound near Millstone Point, Connecticut (USA) unrelated to thermal input. J. Sea Res. 49:11-26. https://doi.org/10.1016/S1385-1101(02)00196-X
  22. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  23. Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  24. Kim, J. K., Kraemer, G. P. & Yarish, C. 2015. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 531:155-166. https://doi.org/10.3354/meps11331
  25. Kim, J. K. & Yarish, C. 2014. Development of a sustainable land-based Gracilaria cultivation system. Algae 29:217- 225. https://doi.org/10.4490/algae.2014.29.3.217
  26. Kim, J. K., Yarish, C. & Pereira, R. 2016. Tolerances to hypoosmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia 55:257-264. https://doi.org/10.2216/15-90.1
  27. Kim, S. Y., Weinberger, F. & Boo, S. M. 2010. Genetic data hint at a common donor region for invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J. Phycol. 46:1346-1349. https://doi.org/10.1111/j.1529-8817.2010.00905.x
  28. Koch, E. W. & Beer, S. 1996. Tides, light and the distribution of Zostera marina in Long Island Sound, USA. Aquat. Bot. 53:97-107. https://doi.org/10.1016/0304-3770(95)01015-7
  29. Lewin, J. 1966. Silicon metabolism in diatoms, V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1-12. https://doi.org/10.2216/i0031-8884-6-1-1.1
  30. Lopez, G., Carey, D., Carlton, J., Cerato, R., Dam Guerrero, H., Digiovanni, C., Elphick, C., Frisk, M., Gobler, C., Hice, L., Howell, P., Jordan, A., Lin, S., Liu, S., Lonsdale, D., McEnroe, M., McKown, K., Mcmanus, G., Orson, R., Peterson, B., Pickerell, C., Rozsa, R., Shumway, S., Talmage, S., Taylor, G., Thomas, D., Van Patten, P., Vaudrey, J., Wikfors, G., Yarish, C. & Zajac, R. 2014. Biology and ecology of Long Island Sound. In Latimer, J. S., Tedesco, M., Swanson, R. L., Yarish, C., Stacey, P. & Garza, C. (Eds.) Long Island Sound: Prospects for the Urban Sea. Springer Publishers, New York, NY, pp. 285-479.
  31. Luning, K. 1990. Seaweeds: their environment, biogeography and ecophysiology. Wiley, New York, 527 pp.
  32. Monteiro, C. A., Engelen, A. H. & Santos, R. O. P. 2009. Macroand mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar. Biol. 156:2505-2515. https://doi.org/10.1007/s00227-009-1275-1
  33. National Centers for Environmental Information (NOAA). 2015. Water temperature table of the Northern Atlantic Coast. NCEI, Maryland Office. Available from: https://www.nodc.noaa.gov/dsdt/cwtg/natl.html. Accessed Jul 1, 2016.
  34. Nettleton, J. C., Mathieson, A. C., Thornber, C., Neefus, C. D. & Yarish, C. 2013. Introduction of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28-41. https://doi.org/10.3119/12-07
  35. Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., McCauley, D. E., O'Neil, P., Parker, I. M., Thompson, J. N. & Weller, S. G. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305-332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037
  36. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U. S. A. 99:2445-2449. https://doi.org/10.1073/pnas.032477999
  37. Schneider, C. W., Suyemoto, M. M. & Yarish, C. 1979. An annotated checklist of Connecticut seaweeds. Conn. Geol. Nat. Hist. Surv. Bull. 108:1-20.
  38. Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B. & Osman, R. W. 2002. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. Proc. Natl. Acad. Sci. U. S. A. 99:15497-15500. https://doi.org/10.1073/pnas.242437499
  39. Stachowicz, J. J., Whitlatch, R. B. & Osman, R. W. 1999. Species diversity and invasion resistance in a marine ecosystem. Science 286:1577-1979. https://doi.org/10.1126/science.286.5444.1577
  40. Thomsen, M. S., Staehr, P. A., Nejrup, L. & Schiel, D. R. 2013. Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquat. Invasions 8:133-145. https://doi.org/10.3391/ai.2013.8.2.02
  41. Tseng, C. K. & Xia, B. -M. 1999. On the Gracilaria in the western Pacific and the southeastern Asia region. Bot. Mar. 42:209-218.
  42. Weinberger, F., Hammann, M., Pohnert, G., Wang, G. G. & Boo, S. M. 2013. Successful invaders are better defended: the example of Gracilaria vermiculophylla. Phycologia 52(4 Suppl.):1-119.
  43. Williams, S. L. & Grosholz, E. D. 2008. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuaries Coast. 31:3- 20. https://doi.org/10.1007/s12237-007-9031-6
  44. Yarish, C., Breeman, A. M. & van den Hoek, C. 1984. Temperature, light, and photoperiod responses of some northeast American and west European endemic rhodophytes in relation to their geographic distribution. Helgolander Meeresunters. 38:273-304. https://doi.org/10.1007/BF01997485
  45. Yarish, C., Breeman, A. M. & van den Hoek, C. 1986. Survival strategies and temperature responses of seaweeds belonging to different biogeographic distribution groups. Bot. Mar. 29:215-230.
  46. Yarish, C. & Edwards, P. 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. Phycologia 21:112-124. https://doi.org/10.2216/i0031-8884-21-2-112.1
  47. Yokoya, N. S., Kakita, H., Obika, H. & Kitamura, T. 1999. Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Island, Japan. Hydrobiologia 398:339-347.

Cited by

  1. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  2. A unique genetic lineage at the southern coast of China in the agar-producing Gracilaria vermiculophylla (Gracilariales, Florideophyceae) vol.33, pp.3, 2018, https://doi.org/10.4490/algae.2018.33.8.30
  3. Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions vol.33, pp.4, 2017, https://doi.org/10.4490/algae.2018.33.11.13
  4. Phycobiliproteins from extreme environments and their potential applications vol.71, pp.13, 2020, https://doi.org/10.1093/jxb/eraa139
  5. Physiological stress modulates epiphyte (Rhizoclonium sp.)-basiphyte (Agarophyton chilense) interaction in co-culture under different light regimes vol.32, pp.5, 2017, https://doi.org/10.1007/s10811-020-02153-w
  6. Concise review of Osmundea pinnatifida (Hudson) Stackhouse vol.32, pp.5, 2017, https://doi.org/10.1007/s10811-020-02183-4
  7. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review vol.193, pp.no.pb, 2021, https://doi.org/10.1016/j.ijbiomac.2021.11.022