2002.07a
-
-
-
-
-
-
고체산화물 연료전지의 구성요소인 양극(공기극)을 GNP와 Pechini 법을 이용하여
$(La{1-x}Sr_x)MnO_3$ 양극을 합성하여 합성한 분말의 특성과 단위전지로 사용하기 위한 조건에서의 특성을 측정하였다. GNP로 합성한 분말의 경우 직접$(LaSr)MnO_3$ 단일 결정상을 얻을 수 있었으나, Pechini 법으로 합성한 분말의 경우는 비정질이었다. 또한 각각의 방법으로 합성한 분말의 입자형태는 구형이었고 1차상 입자크기는 GNP가 40nm, Pechini, 법으로 합성한 경우 20nm 정도의 크기를 갖고 있었다. GNP로 합성한 분말의 입자크기와 비표면적의 경우 glycine의 첨가량이 증가함에 따라 입자크기는 감소하였으나 최적 glycine 첨가량은 2.0mole 였고, 이 때 평균2차상의 입자크기는$13.24{\mu}m$ 로 agglomeration 되어있었다. 최적 cathode조성은 GNP법으로 합성한$(La_{0.9}Sr_{0.1}MnO_3$ 로서 가능하였고, 이 조성에서의 열팽창계수는$9.89\times10^{-6}/^{\circ}C$ 이고, 전기전도도($1200^{\circ}C$ 에서 2시간소결)는 110 S/cm을 나타내었다. -
-
The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell. The paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the Polymer Electrolyte Membrane Fuel Cell(PEMFC) and also the correlation of the required hydrophiliticityihydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.
-
본 연구에서는 고분자 전해질 연료전지(PEMFC)용 전극 슬러리 조성변화가 막전극접합체(MEA)의 전극 특성에 미치는 영향을 조사하였다. 전극촉매의 구성 성분인 Nafion의 함량을 변화시켜 전극 성능의 최적 함량을 고찰하였고, 백금의 함침량의 변화에 따른 전극 성능을 고찰하였다.
-
-
-
-
The electrooxidation of methanol was studied using Pt, PtRu(1:1), PtNi(1:1), PtRh(1:1) and PtOs(1:1) alloy nanoparticles for application as electrocatalysts. The effects of the second metals in the electrocatalytic activity was investigated using cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). There are the metallic and oxygen states in the PtRu and PtOs electrocatalysts . In the XPS of PtRu and PtOs alloy nanoparticles, the oxygen sources were dominant as the second metal's effects. Negative shifts of the binding energies of Pt for the PtNi, PtRh alloy nanoparticles were determined by XPS measurements, which can be explained by electronic effects.
-
-
An analytical study on BMFCS was carried out by employing the computational fluid dynamics(CFD) method. In this study, the commercial CFD code Fluent(ver. 5.5) was used, and many assumptions were adopted to simplify the situation in the fuel cell. From the simulation, many valuable informations were obtained in terms of distributions of velocity, pressure, temperature, density and current density over the flow field. And thus, it was anticipated that the simulation results were very helpful in developing DMFCs by facilitate optimization of structures of electrodes and flow field of the separator.
-
The electrooxidation of methanol was studied using carbon-supported PtRu(1:1) alloy nanoparticles In sulfuric acid solution for application to a direct methanol fuel cell. The GNF-supported catalyst showed excellent catalytic activities compared to those of Vulcan XC-72. The structure and electrocatalytic activity of carbon-supported electrocatalyst were investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The CV and CA confirmed the advantage of GNF as the supporting material. This can be explained by assuming that the enhanced activities of GNF-supported catalyst for methanol electrooxidation were caused by the unique properties of GNF.
-
-
In this study, Pt/Pd (1.1), PtPd (2:1) and PtPd (3:1) binary catalysts and Pt/Ru/Pd (5:4:1) ternary catalyst were designed. The catalysts were synthesized by impregnation method using
$NaBH_4$ as a reducing agent. A good catalyst for methanol oxidation requires low on-set potential, stable durability and low activation energy. In order to investigate the catalytic activity for the methanol oxidation, electrochemical measurements such as cyclic voltammetry and chronoamperometry were peformed in sulfuric acid with/without methanol solution. In order to calculate the activation energy of the reaction, electrochemical measurements were also tested at different temperatures. For investigation of the structural analysis such as particle size and alloying, X-ray diffraction and transmission electron microscopy analysis were used. In order to identify the role of the Pd and to determine the composition of the surface of the Pt/Pd nanoparticles, X-ray photoelectron spectroscopy (XPS) analysis was investigated. The XPS spectra of Pd showed that Pd appears only as a metallic state in the binary catalysts. The chemical states of Pt in PtPd catalysts are both metallic and oxidative. Polarization curves and power density data were obtained by testing the DMFC unit cell performance of PtPd and PtRuPd catalysts. These data showed that Pt/Pd (2:1) and Pt/Ru/Pd (5:4:1) have better performance than Pt and Pt/Ru, respectively. -
-
-
-
Jung Doo-Hwan;Hong Seong-Hwa;Peck Dong-Hyun;Song Rak-Hyun;Shin Dong-Ryul;Velayuthan Guruviah 241
-
-
[
$Ni-10wt.\%Cr$ ] green sheet를 불활성분위기로$900^{\circ}C$ 까지 승온시킨 다음 부분산화$(P_{H2}/P_{H2O}=10^{-2})$ 후$1100^{\circ}C$ 에서 3시간 환원처리를 시키는 소결공정으로 Ni-Cr 고용체 기지 주변에 작은$Cr_2O_3$ 알갱이가 고르게 분포하는 anode(Anode Sintered in Partial oxidation - Reduction atmosphere; ASPR)를 제조하였으며, creep 변형률이$2.8\%$ 로서 미세구조에 따른 creep 특성의 비교를 위해 기존의 환원분위기에서만 소결시킨 anode(Anode Sintered in Reduction atmosphere only; ASR)의$11\%$ 보다 우수한 creep 저항성을 나타내었다.$Cr_2O_3$ 알갱이가 분산된 미세구조른 부분산화 시 Cr과 Ni의 산화속도 및 확산속도의 차이로 인해 형성되는 것으로 사료되며, creep 전${\cdot}$ 후 ASPR 시편의 SEM 및 기공률 분석결과 매우 안정적으로 그 형상 및 구조를 유지하고 있음을 확인할 수 있었다. 또한 ASPR 시편의 전기전도도는 약$15\times10^6\;S/m$ 로서 기존 ASR 시편의 전기전도도와 유사함을 알 수 있었다. -
-
고체산화물 연료전지의 구성요소인 전해질의
$(La_{1-x}Sr_x)(Ga_{1-y}Mg_y)O_{3-\delta}$ 계의 결정상 및 미세구조특성을 연구하였다. Mg의 첨가량이 증가할수록 Sr의 고용량도 증가하였으며 Sr의 함량이 많으면 2차상인$LaSrGa_3O_7$ 상이 생성되었으며 Mg의 첨가량이 증가함에 따라서는$LaSrGaO_4$ 상이 생성되었다.$LaSrGaO_4$ 상이 생성된 경우에는 낮은 전도도를 나타내었으며$LaSrGa_3O_7$ 상의 경우에는 전기전도도에 큰 영향을 미치지 않았다. 또한 Sr과 Mg 첨가량의 증가는 grain 성장을 억제하였으며$(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ 는$1000^{\circ}C$ 에서 0.1S/cm 정도의 전기전도도를 나타내었다. -
-
-