컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.