Kim, Jong-Kyoung;Ha, Young-Sun;Lee, Jun-Ho;Lee, Sang-Duk;Kim, Jae-Neung
33
The aim of this study was to develop a model that could be used in the design of modified atmosphere packaging (MAP) for peaches. Respiratory data at 5, 10, $20^{\circ}C$ for peaches were gathered and altered for create useful respiration model. Packaging materials were conventional low density polyethylene and polypropylene with anti-fog, and anti-fungi treatments, and thickness was $30{\mu}m$ and $50{\mu}m$ each. Permeability tests were performed to find their oxygen, carbon dioxide, water vapor transmission rate as increases in temperature. Test results were then converted to logarithm format for MAP modeling. The maximum rate of oxygen uptake increased with increasing temperature. Optimum gas composition in the package system for fruits were set according to literature and upper or lower limits of oxygen and dioxide established. To predict gas composition at certain storage time, weight of fruits, film thickness, film type, and other variables, respiration rate was studied at various storage conditions. The results of tests were used to calculate Cameron's model and converted to a cubic estimation equation. The validity of the model was tested experimentally by observing actual atmospheric changes inside packages. This result of study may be useful for designing dynamic gas exchange MAP systems for similar agricultural products.