The vulnerability of GPS to interference signals was reported in the early 2000s, and an eLORAN system has been suggested as a backup navigation system for replacing the existing GPS. Thus, relevant studies have been carried out in the United States, Europe, Korea, etc., and especially, in Korea, the research and development is being conducted for the FOC of the eLORAN system by 2018. The required performance of the eLORAN system is to meet the HEA performance, and to achieve this, it is essential to perform ASF correction based on a dLORAN system. ASF can be divided into temporal ASF, nominal ASF, and spatial ASF. Spatial ASF is the variation due to spatial characteristics, and is stored in an eLORAN receiver in the form of a premeasured map. Temporal ASF is the variations due to temporal characteristics, and are transmitted from a dLORAN site to a receiver via LDC. Unlike nominal ASF that is obtained by long-term measurement (over 1 year), temporal ASF changes in a short period of time, and ideally, real-time correction needs to be performed. However, it is difficult to perform real-time correction due to the limit of the transmission rate of the LDC for transmitting correction values. In this paper, to determine temporal ASF correction frequency that shows satisfactory performance within the range of the limit of data transmission rates, relative variations of temporal ASF in summer and winter were measured, and the stability of correction values was analyzed using the average of temporal ASF for a certain period.