The larger trends related to cracking in ocean going vessels (primarily tankers and bulk carriers) are reviewed on the basis of available data. The typical interrelated causes of such cracking are: high local stresses, extensive use of higher strength steels, inadequate treatment of dynamic loads, adverse operational factors (harsh weather, improper vessel handling), and controllable structural degradation (corrosion, wear, stevedore damage). Three consequences of cracking are then discussed: structural failure, pollution, and increased maintenance. The first two, while rare, are potentially of high consequence including loss of life. The types of solutions that can be employed to improve the durability of ships in the face of fatigue cracking are then presented. For existing vessels, these solutions range from repairs based on structural analysis or service experience, control of corrosion, and enhanced surveys. For new vessels, the use of advanced design procedures that specifically address dynamic loads and fatigue cracking is necessary. As the preferred solution to the problem of cracking in ships, this paper advocates prevention by explicit design by first principles.